Journal of Jilin University(Engineering and Technology Edition) ›› 2019, Vol. 49 ›› Issue (4): 1194-1202.doi: 10.13229/j.cnki.jdxbgxb20180336

Previous Articles    

Multi⁃objective optimization design of flexspline profile parameters of double⁃arc harmonic drive

Jia⁃xu WANG1,2(),Qian⁃qian JIANG1,Jun⁃yang LI1,Yan⁃feng HAN1,Lei ZHANG1,Ting TANG1   

  1. 1. State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, China
    2. School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
  • Received:2018-04-13 Online:2019-07-01 Published:2019-07-16

Abstract:

The continuous meshing zone and "double conjugate" phenomenon of the circular spline and flexspline under no?load conditions can effectively improve the meshing performance of the double?arc harmonic gear device. For this reason, a multi?objective optimization design method of the tooth profile parameters of the double?circle flexspline is proposed. For the non?public tangential double?arc tooth profile, the conjugate tooth profile was designed by using the relationship between the improved kinematics method and the precise rotation angle. To reduce the difference between the conjugate blank area and the conjugate tooth profile as the optimization goal, a harmonic drive multi?objective optimization model was established. Considering the existence conditions of conjugate tooth profiles, single target analysis and multi?objective optimization are performed. The results show that the two objective functions increase with the increase of the radial deformation coefficient and the double circular arc inclination, and decrease with the increase of the tooth thickness ratio; Radial deformation coefficient and double circular arc inclination have the greatest influence on the two objective functions, and tooth thickness ratio has less influence on the difference of minimum conjugate tooth profile. Convex arc radius coefficient and concave arc radius coefficient have almost no effect on the minimum blank conjugate area; this optimization method can achieve a reasonable selection of parameters of the soft tooth profile, and make the freewheeling state between the circular spline and the flexspline is less than 1.2°, and the difference between the conjugate profiles is about 0.83 μm, which can meet the requirements of engineering applications. Guaranteed no?load continuous meshing interval and "double conjugate" transmission accuracy.

Key words: technology of instrument and meter, harmonic drive, double?arc tooth profile, multi?objective optimization, profile parameters

CLC Number: 

  • TH132.43

Fig. 1

Harmonic gear coordinate system"

Table 1

Harmonic drive parameter meaning."

符 号 意义
ρ O 1点矢径
r m 变形前柔轮的中性层半径
Δφ 矢径ρY 2的夹角
β Y 1相对于轴Y 2的转角
φ 1 矢径ρ与轴Y的夹角
φF 输出端轴YF 相对于轴Y 2的转角
φ 输出端轴YF 与轴Y的夹角
φ w Y相对于Y 2的转角

Fig.2

Coordinate system of double?arc tooth profile"

Table 2

Flexspline profile parameters"

符号 参数 符号 参数
h a * 齿顶高系数

t

y a

x a

y f

x f

m

齿根壁厚
h f * 齿根高系数 凸齿圆心移距量
h 全齿高 凸齿圆心偏移量
ρ a * 凸圆弧半径系数 凹齿圆心移距量
ρ f * 凹圆弧半径系数 凹齿圆心偏移量
γ 双圆弧倾角 模数

Table 3

Flexspline tooth profile parameters"

参 数 数值/mm 参 数 数值/mm
h a * 0.7 t 1 0.7132
h f * 0.8 γ
xa 0.4001 x f 0.2617
ya 0.0671 y f 0.0679
ρ a * 1.5 ρ f * 1.7
k t 1.7 h 0.594

Fig.3

Conjugate area of tooth profile of double?arc flexspline"

Fig.4

Conjugate profile of tooth profile of double?arc flexspline"

Table 4

Relationship between minimum radial deformation coefficient and inclination angle"

序号 w 0 * γ/(?) f 1(X)/(?) f 2(X)×102/mm
1 1.0451 6 1.193892 1.625692
2 1.0356 7 1.366803 2.568918
3 1.0249 8 1.380991 3.557457
4 1.0131 9 1.266604 4.450072
5 1.0004 10 1.265910 5.291463
6 0.9869 11 1.399478 6.388948
7 0.9725 12 1.218316 7.427592
8 0.9575 13 1.205427 8.416463
9 0.9419 14 1.14275 9.359473
10 0.9258 15 1.059737 10.254036

Fig.5

Influence of radial deformation coefficient on single objective function"

Fig.6

Influence of double arc angle on the single objective function"

Fig.7

Influence curve of convex arc radius coefficient on single objective function"

Fig.8

Influence curve of convex arc radius coefficient on single objective function"

Fig.9

Effect of tooth thickness ratio on single objective function"

Table 5

Harmonic gear drive multi-objective optimization results"

序 号 w 0 * γ/(?) ρ a * ρ a * k t f 1(X)/(?) f 2(X)×102/mm
1 1.0451 6 1.5791 1.6668 1.7 1.191279 0.083268
2 1.0356 7 1.6908 1.7289 1.7 1.356309 1.965230
3 1.0249 8 1.5489 1.6754 1.7 1.380993 2.961959
4 1.0131 9 1.5489 1.6753 1.7 1.266431 4.181113
5 1.0004 10 1.5390 1.6535 1.7 1.267915 5.210725
6 0.9869 11 1.5391 1.6534 1.7 1.397736 6.345894
7 0.9725 12 1.5610 1.6296 1.7 1.220946 7.208653
8 0.9575 13 1.5528 1.6194 1.7 1.206309 8.103814
9 0.9419 14 1.5791 1.6050 1.7 1.154419 8.907568
10 0.9258 15 1.5777 1.6001 1.7 1.073299 9.731521
1 Preumont P , Szewczyk R . Key Factors Influencing the Accuracy of Harmonic Gears for Space Applications[C] ∥Szewczyk R , Zieliński C , Kaliczyńska M . Automation 2018. Berlin: Springer, 2018: 483⁃489.
2 Timofeev G A . Drives with harmonic gears for servo systems[J]. Russian Engineering Research, 2016, 36(3): 187⁃193.
3 董惠敏 . 基于柔轮变形函数的谐波齿轮传动运动几何学及其啮合性能研究[D]. 大连: 大连理工大学机械工程学院, 2008.
Dong Hui⁃min . Study of kinematics and meshing characteristic of harmonic drive based on the deformation function of the flexspline[D]. Dalian: School of Mechanical Engineering, Dalian University of Technology, 2008.
4 刘邓辉, 邢静忠, 陈晓霞 . 渐开线谐波齿轮的空间齿廓设计及啮合特性分析[J]. 机械设计, 2016, 33(3): 24⁃29.
Liu Deng⁃hui , Xing Jing⁃zhong , Chen Xiao⁃xia . Spatial tooth profile design and engagement analysis of harmonic gear with involute profile[J]. Journal of Machine Design, 2016, 33(3): 24⁃29.
5 Ishikawa S , Takizawa N . Wave gear drive having negative deflection meshing tooth profile[P]. US Patent: 7735396, 2010⁃06⁃15.
6 Ishikaua S . Wave gear device having three⁃dimensionally contactable shifted tooth profile[P]. US Patent: 8776638, 2014⁃07⁃15.
7 王家序, 周祥祥, 李俊阳, 等 . 不同共轭原理的双圆弧齿廓谐波齿轮传动分析[J]. 四川大学学报: 工程科学版, 2015, 47(5): 160⁃166.
Wang Jia⁃xu , Zhou Xiang⁃xiang , Li Jun⁃yang , et al . Double⁃circular⁃arc tooth profile of harmonic drive analysis based on different conjugate principle[J]. Journal of Sichuan University(Engineering Science Edition), 2015, 47(5): 160⁃166.
8 王家序, 周祥祥, 李俊阳,等 . 公切线式双圆弧齿廓谐波齿轮传动设计[J]. 湖南大学学报: 自然科学版, 2016, 43(2): 56⁃63.
Wang Jia⁃xu , Zhou Xiang⁃xiang , Li Jun⁃yang , et al . Design of double⁃circular⁃arc and common tangent tooth profile of harmonic drive[J]. Journal of Hunan University (Natural Sciences), 2016, 43(2):56⁃63.
9 Chen Xiao⁃xia , Liu Yu⁃sheng , Xing Jing⁃zhong , et al . The parametric design of double⁃circular⁃arc tooth profile and its influence on the functional backlash of harmonic drive[J]. Mechanism and Machine Theory, 2014, 73(2): 1⁃24.
10 Chen Xiao⁃xia , Lin Shu⁃zhong , Xing Jing⁃zhong , et al . Simulation on gear backlash and interference check of harmonic drive with circular⁃arc teeth profile[J]. Computer Integrated Manufacturing Systems, 2011, 17(3): 643⁃648.
11 Xin Hong⁃bing . Design for basic rack of harmonic drive with double⁃circular⁃arc tooth profile[J]. China Mechanical Engineering, 2011, 22(6): 656⁃662.
12 杨勇, 王家序, 周青华, 等 . 双圆弧谐波齿轮传动柔轮齿廓参数的优化设计[J]. 四川大学学报: 工程科学版, 2016, 48(1):186⁃193.
Yang Yong , Wang Jia⁃xu , Zhou Qing⁃hua , et al . Optimization design for flexspline tooth profile parameters of double⁃circular⁃arc harmonic drives[J]. Journal of Sichuan University(Engineering Science Edition), 2016, 48(1): 186⁃193.
13 翟永 . 谐波齿轮传动双圆弧齿形设计与分析[D]. 大连:大连海事大学轮机工程学院, 2015.
Zhai Yong . Double⁃arc tooth profile design and analysis of harmonic drive[D]. Dalian: School of Marine Engineering, Dalian Maritime University, 2015.
[1] QIU Yan-kai, LI Bao-ren, YANG Gang, CAO Bo, LIU Zhen. Characteristics and mechanism reducing pressure ripple of hydraulic system with novel hydraulic muffler [J]. 吉林大学学报(工学版), 2018, 48(4): 1085-1091.
[2] WU Jiang, XU Zhuang, LIU Li-jia, JI Yan-ju, LI Su-yi. Peripheral oxygen saturation detecting prototype applied in sleep apnea syndrome [J]. 吉林大学学报(工学版), 2018, 48(2): 640-644.
[3] YANG Cheng, SONG Ping, PENG Wen-jia, JIN Hao-long, PAN Zhi-qiang. Design of armored vehicle integrated test system based on hybrid bus [J]. 吉林大学学报(工学版), 2018, 48(1): 186-198.
[4] YANG Cheng, SONG Ping, PENG Wen-jia, DENG Gao-shou, LIU Xiong-jun. Design of host computer platform for armored vehicle integrated test system [J]. 吉林大学学报(工学版), 2017, 47(6): 1796-1803.
[5] BAI De-en, QUAN Qi-quan, LI He, CHEN Ya-wen, DENG Zong-quan. Starting torque test system for harmonic drive based on servo laoding [J]. 吉林大学学报(工学版), 2017, 47(6): 1804-1810.
[6] WANG Tian-hao, WANG Zhong-fu, WANG Yu-meng, YANG Kai-yu, GAO Yin-han, MA Xi-lai. Statistic analysis of cable bundle crosstalk based on polynomial chaos expansion [J]. 吉林大学学报(工学版), 2017, 47(5): 1568-1576.
[7] WANG Jia-xu, YUAN Pan, TAN Chun-lin, HE Yong-qiang, LI Jun-yang, XIAO Ke. Spatial tooth profile design of harmonic drive by rack approximation method [J]. 吉林大学学报(工学版), 2017, 47(4): 1121-1129.
[8] LIU Xiao-wei, LI Hai, WENG Rui, ZHANG Hai-feng, ZHAO Jun. Application of electrostatic torque to improve dynamic characteristics of novel rotational gyroscope [J]. 吉林大学学报(工学版), 2017, 47(3): 850-854.
[9] LIN Jun, ZHAO Yue, JIANG Chuan-dong, WANG Ying-ji. New surface MRS method based on optimized Block inversion [J]. 吉林大学学报(工学版), 2017, 47(2): 530-539.
[10] ZHANG Fei, SHAN Zhong-de, REN Yong-xin, NIE Jun-gang, LIU Feng. Calibration of line array camera for head defect detection system on cylinder cover [J]. 吉林大学学报(工学版), 2017, 47(2): 540-545.
[11] YIN Yao-bao, YUAN Jia-yang, FU Jun-yong. Characteristics of two-stage relief valve with series damping orifice in the front chamber of pilot valve [J]. 吉林大学学报(工学版), 2017, 47(1): 129-136.
[12] LIN Jun, YANG Yu, HU Xue-yan, WANG Shi-long. Transmitting waveform control technology for transient electromagnetic method based on inductive load [J]. 吉林大学学报(工学版), 2016, 46(5): 1718-1724.
[13] YU Sheng-bao, SU Fa, ZHENG Jian-bo, ZHU Zhan-shan. Design of transient electromagnetic receiving system based on LabVIEW [J]. 吉林大学学报(工学版), 2016, 46(5): 1725-1731.
[14] SHEN Mao-dong, CHENG De-fu, AN Zhan-feng, WANG Yi, ZHAO Jing. Optimization of slanting surfaces of five-sided pyramidal full tensor magnetic gradient probe [J]. 吉林大学学报(工学版), 2016, 46(5): 1732-1738.
[15] LIN Jun, ZHAO Yue, JIANG Chuan-dong, LI Tong, LIU Xiao-nan. Three-dimensional forward modeling with high precision for underground MRS based on Hammer integration [J]. 吉林大学学报(工学版), 2016, 46(2): 609-615.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!