Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (1): 181-187.doi: 10.13229/j.cnki.jdxbgxb20190967

Previous Articles    

Performance of silica carbon black modified basalt fiber reinforced polyamide 6 composite

Yi LI(),Dong-di HUANG,Kai-feng YU(),Ji-cai LIANG,Xiao-ling HE,Xi-tong REN   

  1. College of Materials Science and Engineering,Jilin University,Changchun 130022,China
  • Received:2019-05-24 Online:2021-01-01 Published:2021-01-20
  • Contact: Kai-feng YU E-mail:henrylee@jlu.edu.cn;yukf@jlu.edu.cn

Abstract:

In this study, first, basalt fiber surface was modified via silicon carbon black (SiCB) with dopamine (DOPA) solution to improve the interfacial bonding between basalt fiber and polyamide 6 (PA6). Then, the effects of different SiCB contents on the properties of basalt fiber/polyamide 6 composites were investigated. The microscopic morphology and structure of the modified BF was characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The fracture behavior of the composite was evaluated by static testing. When the content of SiCB is 2.0 g/L, the tensile strength and impact strength of the composites are increased by 109.4% and 89.3%. SEM proves that the silica carbon black on the surface of BF is homogeneous. According to the DCS results, the silica carbon black effectively reduces the crystallization enthalpy of PA6 and improves the crystallinity of PA6.

Key words: composite material, basalt fiber, silicon carbon black, modification treatment, tensile strength

CLC Number: 

  • TQ327.9

Fig.1

Experiment of basalt fiber modification process"

Fig.2

FT-IR spectra of DOPA BF and MBF"

Fig.3

Apparent shear viscosity of composites black"

Fig.4

Standard specimen for tensile test and diagrams for tensile strength and impact strength"

Table 1

DSC parameters of PA6 and its composites"

材料

结晶温度

/℃

结晶焓

/(J·g-1)

熔融温度

/℃

熔融焓

/(J·g-1)

PA6182.8102.9219.298.6
0.5SiCB/BF/PA6181.581.23220.1109.6
1.0SiCB/BF/PA6180.878.93219.0103.2
1.5SiCB/BF/PA6178.582.33220.4105.3
2.0SiCB/BF/PA6178.374.02219.8102.6
2.5SiCB/BF/PA6178.089.54220.3100.8

Fig.5

Crystallization curve and melting curveof PA6 and its composites"

Fig.6

SEM observation of BF coated with different concentrations of silicon carbon"

Fig.7

SEM micrographs of the tensile-fractured surfaces"

1 Colombo C, Vergani L, Burman M. Static and fatigue characterisation of new basalt fibre reinforced composites[J]. Composite Structures, 2012, 94(3): 1165-1174.
2 谢尔盖. 玄武岩纤维的特性及其在中国的应用前景[J]. 玻璃纤维, 2005(5): 44-48.
Sergei O A. Characteristics of basalt fiber and its application prospect in China[J]. Fiber Glass, 2005(5): 44-48.
3 Elsabbagh A, Steuernagel L, Ring J. Natural Fibre/PA6 composites with flame retardance properties: Extrusion and characterisation[J]. Composites Part B: Engineering, 2017, 108: 325-333.
4 Guo Y M, Li Y, Wang S N, et al. Effect of silanetreatment on adhesion of adhesive-bonded carbon fiber reinforced nylon 6 composite[J]. International Journal of Adhesion and Adhesives, 2019, 91: 102-115.
5 Dhand V, Mittal G, Rhee K Y, et al. A short review on basalt fiber reinforced polymer composites[J]. Composites Part B: Engineering, 2015, 73: 166-180.
6 雷静, 党新安, 李建军. 玄武岩纤维的性能应用及最新进展[J]. 化工新型材料, 2007, 35(3): 9-11.
Lei Jing, Dang Xin-an, Li Jian-jun. Characteristic, application and development of basalt fiber[J]. New Chemical Materials, 2007, 35(3): 9-11.
7 Karolina M, Stanislaw K, Kamila S. Mechanical, fire, and smoke behaviour of hybrid composites based on polyamide 6 with basalt/carbonfibres[J]. Journal of Composite Materials, 2019, 53(28-30): 3979-3991.
8 Lee T W, Lee S, Park S M, et al. Mechanical, thermomechanical, and local anisotropy analyses of long basalt fiber reinforced polyamide 6 composites[J]. Composite Structures, 2019, 222: 110917.
9 Yu S, Oh K H, Hong S H. Effects of silanization and modification treatments on the stiffness and toughness of BF/SEBS/PA6,6 hybrid composites[J]. Composites Part B: Engineering, 2019, 173: 106922.
10 Kovačević S, Brnada S, Dubrovski P D. Analysis of the mechanical properties of woven fabrics from glass and basalt yarns[J]. Fibres and Textiles in Eastern Europe, 2015, 23(6): 83-91.
11 Pak S, Park S, Song Y S, et al. Micromechanical and dynamic mechanical analyses for characterizing improved interfacial strength of maleic anhydride compatibilized basalt fiber/polypropylene composites[J]. Composite Structures, 2018, 193: 73-79.
12 王辉, 王军杰, 王书展, 等. POE-g-MAH改性PA6/BF复合材料的力学和摩擦磨损性能研究[J]. 塑料工业, 2017, 45(4): 36-39, 76.
Wang Hui,Wang Jun-jie, Wang Shu-zhan, et al. Effect of POE-g-MAH on the mechanical and tribological properties of polyamide 6/basalt fiber composites[J]. China Plastics Industry, 2017, 45(4): 36-39, 76.
13 Zegaoui A, Derradji M, Ma R, et al. High -performance polymeric materials with greatly improved mechanical and thermal properties from cyanate ester/benzoxazine resin reinforced by silane-treated basalt fibers[J]. Journal of Applied Polymer Science, 2018, 135: 46283.
14 Wu G M, Hung C H, You J H, et al. Surface modification of reinforcement fibers for composites by acid treatments[J]. Journal of Polymer Research, 2004, 11(1): 31-36.
15 Wang G J, Liu Y W, Guo Y J, et al. Surface modification and characterizations of basalt fibers with non-thermal plasma[J]. Surface and Coatings Technology, 2007, 201(15): 6565-6568.
16 Manikandan V, Winowlin Jappes J T, Suresh Kumar S M, et al. Investigation of the effect of surface modifications on the mechanical properties of basalt fibre reinforced polymer composites[J]. Composites Part B: Engineering, 2012, 43(2): 812-818.
17 Lee J J, Nam I, Kim H. Thermal stability and physical properties of epoxy composite reinforced with silane treated basalt fiber[J]. Fibers and Polymers, 2017, 18: 140-147.
18 Mondragon G, Santamaria-Echart A, Hormaiztegui M E V, et al. Nanocomposites of waterborne polyurethane reinforced with cellulose nanocrystals fromSisal fibres[J]. Journal of Polymers and the Environment, 2017, 26: 1869-1880.
19 周玉. 硅炭黑/高分子聚合物复合材料的制备及性能研究[D]. 长春:吉林大学化学学院,2017.
Zhou Yu. A study about the preparation and performance of silica carbon black/polymer composites[D]. Changchun: College of Chemistry, Jilin University, 2017.
20 Sa R, Yan Y, Wei Z H, et al. Surface modification of aramid fibers by bio-inspired poly(dopamine) and epoxy functionalized silane grafting[J]. Applied Materials & Interfaces(ACS), 2014, 6(23): 21730-21738.
[1] Fan YANG,Xu-dong ZHANG,Meng ZHAO,Bo SHE,Jun-kai DENG. Deformation behavior of shape memory alloy-metallic glass matrix composites based on finite element calculations [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 172-180.
[2] Chun-feng ZHU,Yong-chun CHENG,Chun-yu LIANG,Bo XIAO. Road performance experiment of diatomite⁃basalt fiber composite modified asphalt mixture [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 165-173.
[3] Jing⁃xin NA,Hao⁃lei LIU,Yi⁃sa FAN,Guo⁃feng QIN,Lei⁃xin PU. Effect of hygrothermal environment on vehicle adhesive tensile strength [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 822-828.
[4] CHENG Yong-chun, BI Hai-peng, MA Gui-rong, GONG Ya-feng, TIAN Zhen-hong, LYU Ze-hua, XU Zhi-shu. Pavement performance of nano materials-basalt fiber compound modified asphalt binder [J]. 吉林大学学报(工学版), 2018, 48(2): 460-465.
[5] HU Zhi-qing, ZHENG Hui-hui, XU Ya-nan, ZHANG Chun-ling, DANG Ting-ting. Effect of Al surface with micro/macro grooves on Al/CFRP adhesive-bonded joints [J]. 吉林大学学报(工学版), 2018, 48(1): 229-235.
[6] LI Jing, WANG Zhe. Mechanical characteristics of concrete under true triaxial loading condition [J]. 吉林大学学报(工学版), 2017, 47(3): 771-777.
[7] YANG Yue, LI Xue, XU Xiao-dan. Microstructure and properties of sintered Ti-B-C-N power [J]. 吉林大学学报(工学版), 2017, 47(2): 552-556.
[8] GUAN Qing-feng, HUANG Wei, LI Huai-fu, GONG Xiao-hua, ZHANG Cong-lin, LYU Peng. Diffusion alloying of Cu-C induced by high current pulsed electron beam [J]. 吉林大学学报(工学版), 2016, 46(6): 1967-1973.
[9] PENG Ai-dong, LIU He-nan. Preparation and fluorescent properties of cubic perylene nanoparticles based on oil-in-water microemulsion method [J]. 吉林大学学报(工学版), 2016, 46(5): 1583-1586.
[10] LIU Li-ping, LIU Yong-bing, JI Lian-feng, CAO Zhan-yi, YANG Xiao-hong. Flow stress behavior of in situ particulate reinforced titanium atrix composite at elevated temperature [J]. 吉林大学学报(工学版), 2016, 46(4): 1197-1201.
[11] YAN Guang, HAN Xiao-jin, YAN Chu-liang,ZHU Lian-qing. Buckling analysis of composite cylindrical shell with cover under axial compressive load [J]. 吉林大学学报(工学版), 2015, 45(1): 187-192.
[12] LIU Jia-an, YU Si-rong, ZHU Xian-yong. Three-point bending properties of Zn-22Al foam sandwich panel [J]. 吉林大学学报(工学版), 2012, 42(02): 344-348.
[13] MA Li, ZHOU Ling, HE Hui, LUO Yuan-fang, JIA De-min. Effect on properties of bamboo / ABS composites by high-temperature cooking of bamboo [J]. 吉林大学学报(工学版), 2011, 41(增刊2): 205-209.
[14] LU Guang-lin, QIU Xiao-ming, BAI Yang, LUN Xin-jie|DENG Bao-qing,REN Lu-qu. Microstructure and performance of c-BN bionic wearresistant composites [J]. 吉林大学学报(工学版), 2011, 41(01): 73-0077.
[15] MENG Song-He, GAO Hui-Ting, SUN Li-An, SHI Hong-Jun. Effect of silica fumeslag on performance of polypropylene fiber concrete [J]. 吉林大学学报(工学版), 2010, 40(增刊): 214-0217.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!