Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (2): 435-441.doi: 10.13229/j.cnki.jdxbgxb20200310

Previous Articles    

Fault diagnosis of current sensor based on linearization model of lithium ion battery

Feng-wen PAN(),Dong-liang GONG,Ying GAO(),Ming-wei XU,Bin MA   

  1. State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022,China
  • Received:2020-05-10 Online:2021-03-01 Published:2021-02-09
  • Contact: Ying GAO E-mail:Panfw15@mails.jlu.edu.cn;gaoying@jlu.edu.cn

Abstract:

In order to diagnose the fault of the input current sensor of the lithium-ion (Li-ion) battery, a linear first-order Thevenin equivalent circuit model of the Li-ion battery, coupled with lumped thermodynamics model, is adopted. Based on this model, a sliding mode observer is designed for fault diagnosis strategy research. First, the nonlinear varying parameters Li-ion battery model is linearized to establish a linear varying parameters Li-ion battery model that satisfies the operating accuracy of the entire operating condition. Then, the linearized Li-ion battery model with varying parameter is recombined and transformed, so that the current in the original system as the input is transformed into the output of the new system. Third, based on the new system of transformation, a sliding mode observer based on temperature estimation error correction is designed to estimate the output current in the new system. Finally, a residual evaluation function based on norm is designed. Simulation results show that the linearized model is feasible; the fault diagnosis strategy designed based on the model can quickly detect the occurrence of input current sensor faults, thus verifying the effectiveness of the proposed fault diagnosis method.

Key words: power engineering, lithium-ion battery, model linearization, current sensor, sliding mode observer, fault diagnosis

CLC Number: 

  • TM912

Fig.1

Equivalent circuit model"

Table 1

Battery parameters"

参数充电(I<0)放电(I>0)
Uocv1.19+0.09SOC+0.001T1.19+0.09SOC+0.001T
R00.004-0.000042T0.004-0.000044T
R10.008-0.000022T-0.0036SOC0.0016-0.000025SOCT
C115001500

Fig.2

Battery output voltage"

Fig.3

Battery temperature"

Fig.4

Input current and estimated current"

Fig.5

Current residual"

Fig.6

Residual evaluation function"

1 苏伟, 钟国彬, 沈佳妮, 等. 锂离子电池故障诊断技术进展[J]. 储能科学与技术, 2019, 8(2): 225-236.
Su Wei, Zhong Guo-bin, Shen Jia-ni, et al. The progress in fault diagnosis techniques for lithium-ion batteries[J]. Energy Storage Science and Technology, 2019, 8(2): 225-236.
2 杨坤, 杨林, 施一新, 等. 电动汽车动力电池组单点绝缘故障定位方法[J]. 汽车工程, 2017, 39(10): 1136-1140.
Yang Kun, Yang Lin, Shi Yi-xin, et al. A single-point insulation fault locating scheme for power battery pack in electric vehicle[J]. Automotive Engineering, 2017, 39(10): 1136-1140.
3 He H, Liu Z, Hua Y. Adaptive extended kalman filter based fault detection and isolation for a lithium-ion battery pack[J]. Energy Procedia, 2015, 75: 1950-1955.
4 Liu Z, He H. Model-based sensor fault diagnosis of a lithium-ion battery in electric vehicles[J]. Energies, 2015, 8(7): 6509-6527.
5 Biron Z A, Pisu P, Ayalew B. Observer-based diagnostic scheme for lithium-ion batteries[C]∥ASME 2015 Dynamic Systems and Control Conference, New York, 2015: 1-7.
6 Dey S, Biron Z A, Tatipamula S, et al. Model-based real-time thermal fault diagnosis of Lithium-ion batteries[J]. Control Engineering Practice, 2016, 56: 37-48.
7 Dey S, Mohon S, Pisu P, et al. Sensor fault detection, isolation, and estimation in lithium-ion batteries[J]. IEEE Transactions on Control Systems Technology, 2016, 24(6): 2141-2149.
8 Xiong R, Yu Q, Shen W, et al. A sensor fault diagnosis method for a lithium-ion battery pack in electric vehicles[J]. IEEE Transactions on Power Electronics, 2019, 34(10): 9709-9718.
9 Lin X, Kim Y, Mohan S, et al. Modeling and estimation for advanced battery management[J]. Annual Review of Control, Robotics, and Autonomous Systems, 2019, 2(1): 393-426.
10 Suozzo C, Onori S, Rizzoni G. Model-based fault diagnosis for NiMH battery[C]∥ASME 2008 Dynamic Systems and Control Conference, New York, 2008: 1075-1081.
11 Marcicki J, Onori S, Rizzoni G. Nonlinear fault detection and isolation for a lithium-ion battery management system[C]∥ASME 2010 Dynamic Systems and Control Conference, New York, 2010: 607-614.
12 Li M F, Chen W, Wu H, et al. Robust state of charge estimation of lithium-ion batteries via an iterative learning observer[C]∥SAE Technical Paper, 2012-01-0659.
13 Sidhu A, Izadian A, Anwar S. Adaptive nonlinear model-based fault diagnosis of Li-ion batteries[J]. IEEE Transactions on Industrial Electronics, 2014, 62(2): 1002-1011.
14 葛云龙, 陈自强, 郑昌文. UTSTF 锂离子电池时变参数估计与故障诊断[J]. 浙江大学学报: 工学版, 2018, 52(6): 1223-1230.
Ge Yun-long, Chen Zi-qiang, Zheng Chang-wen. Time-varying parameters estimation and fault diagnosis of li-ion battery using UTSTF[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(6): 1223-1230.
15 潘凤文, 麻斌, 高莹, 等. 奇偶空间法用于电动车锂离子电池传感器故障诊断[J]. 汽车工程, 2019, 41 (7): 831-838.
Pan Feng-wen, Ma Bin, Gao Ying, et al. Parity space approach for fault diagnosis of lithium-ion battery sensor for electric vehicle[J]. Automotive Engineering, 2019, 41(7): 831-838.
16 Sidhu A, Izadian A, Anwar S. Model-based adaptive fault diagnosis in lithium ion batteries: a comparison of linear and nonlinear approaches[C]∥AE Technical Paper, 2017-01-1192.
17 Cambron D C, Cramer A M. A lithium-ion battery current estimation technique using an unknown input observer[J]. IEEE Transactions on Vehicular Technology, 2017, 66(8): 6707-6714.
18 柳应全, 鲁军勇, 龙鑫林, 等. 储能用蓄电池模型参数的动态辨识[J]. 国防科技大学学报, 2019, 41(5): 87-92.
Liu Ying-quan, Lu Jun-yong, Long Xin-lin, et al. Dynamic identification of model parameters for energy storage batteries[J]. Journal of National University of Defense Technology, 2019, 41(5): 87-92.
19 Cheng K W E, Divakar B P, Wu H, et al. Battery-management system (BMS) and SOC development for electrical vehicles[J]. IEEE Transactions on Vehicular Technology, 2010, 60(1): 76-88.
20 Miao Z, Xu L, Disfani V R, et al. An SOC-based battery management system for microgrids[J]. IEEE Transactions on Smart Grid, 2013, 5(2): 966-973.
21 Bhangu B S, Bentley P, Stone D A, et al. Nonlinear observers for predicting state-of-charge and state-of-health of lead-acid batteries for hybrid-electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2005, 54(3): 783-794.
22 He H, Xiong R, Fan J. Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach[J]. Energies, 2011, 4(4): 582-598.
23 Ablay G. Online condition monitoring of battery systems with a nonlinear estimator[J]. IEEE Transactions on Energy Conversion, 2013, 29(1): 232-239.
[1] Fei GAO,Yang XIAO,Wen-hua ZHANG,Jin-xuan QI,Zi-qiao LI,Xiao-yuan MA. Influence of coupling of elevated temperature and state of charge on mechanical response of Liion battery cells [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1574-1583.
[2] Gen-bao ZHANG,Hao LI,Yan RAN,Qiu-jin LI. A transfer learning model for bearing fault diagnosis [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1617-1626.
[3] WANG De-jun, WEI Wei-li, BAO Ya-xin. Actuator fault diagnosis of ESC system considering crosswind interference [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1548-1555.
[4] SONG Da-feng, LI Guang-han, ZHANG Lin, PAN Bing, ZENG Xiao-hua, PENG Yu-jun, WANG Qing-nian. Application of fuzzy mathematics in fault diagnosis of motor of hybrid vehicle [J]. 吉林大学学报(工学版), 2016, 46(2): 354-359.
[5] OUYANG Dan-tong,CHI Jin-jin,WANG Xiao-yu,ZHAO Xiang-fu ,MENG Xiang-yu. Approach of diagnosis of higher-order discrete event systems [J]. 吉林大学学报(工学版), 2015, 45(2): 562-568.
[6] SONG Bao-yu,XIE Zhi-jie,ZHANG Feng,WANG Rui-ze,HAO Ming-hui,SU Dai-zhong. Fault diagnosis algorithm for helical gear rotating at low speed on angular domain synchronous average and order tracking analysis [J]. 吉林大学学报(工学版), 2015, 45(2): 454-459.
[7] ZHAO Bo, LI Cheng-hao, LI Yuan-chun. Online fault estimation based on decentralized fault-tolerant control for reconfigurable manipulators [J]. 吉林大学学报(工学版), 2014, 44(6): 1729-1735.
[8] CHEN Yan-hong, WU Wei-jing, LIU Hong-wei, SHEN Shuai, LI Ce-yuan, GENG Huan-liang. Thermal characteristics of battery for pure electric vehicles [J]. 吉林大学学报(工学版), 2014, 44(4): 925-932.
[9] XIE Fang-xi, YU Ze-yang, LIU Si-nan, CAO Xiao-feng, JIA Gui-qi, HONG Wei. Effects of injection pressure on fuel spray and air-fuel mixing process of diesel engine [J]. 吉林大学学报(工学版), 2013, 43(06): 1504-1509.
[10] WU Jian, ZHAO Yang, HE Rui. Fault detection and diagnosis of EMB sensor system based on SVR [J]. 吉林大学学报(工学版), 2013, 43(05): 1178-1183.
[11] SUN Wan-chen, SUN Shi-long, WANG Xiao-dan, LI Guo-liang, LAI Chun-jie. Effect of fuel volatility on particle size distribution in common-rail diesel engine [J]. 吉林大学学报(工学版), 2013, 43(03): 619-625.
[12] ZHANG Cai-ping, JIANG Jiu-chun. Extended Kalman filter algorithm for parameters identification of dynamic battery model based on genetic algorithm optimization [J]. , 2012, (03): 732-737.
[13] HAO Yan, WANG Tai-yong, WAN Jian, ZHANG Pan, LIU Lu. Mechanical fault diagnosis based on empirical mode decomposition and generalized dimension [J]. 吉林大学学报(工学版), 2012, 42(02): 392-396.
[14] CHEN Yun-han, QIN Gui-he, YU He, HUANG Yue. In-vehicle network management system complied with OSEK/VDX direct NM [J]. 吉林大学学报(工学版), 2011, 41(05): 1407-1413.
[15] KONG Fan-sen,WU Ya-fu,LI Cong. Assessment of fault diagnosis complexity about electrical fault diagnosis of equipment based on information entropy [J]. 吉林大学学报(工学版), 2011, 41(03): 697-701.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!