Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (3): 1131-1139.doi: 10.13229/j.cnki.jdxbgxb20200116

Previous Articles    

Automatic recognition and classification of field insects based on lightweight deep learning model

Zhe-ming YUAN1,2(),Hong-jie YUAN1,2,Yu-xuan YAN2,Qian LI2,3,Shuang-qing LIU4,Si-qiao TAN1,2()   

  1. 1.Hunan Engineering & Technology Research Center for Agricultural Big Data Analysis & Decision-making,Hunan Agricultural University,Changsha 410128,China
    2.Hunan Engineer Research Center for Information Technology in Agriculture,Hunan Agricultural University,Changsha 410128,China
    3.Business School,Hunan Agricultural University,Changsha 410128,China
    4.College of Plant Protection,Hunan Agricultural University,Changsha 410128,China
  • Received:2020-02-25 Online:2021-05-01 Published:2021-05-07
  • Contact: Si-qiao TAN E-mail:zhmyuan@sina.com;tsq@hunau.edu.cn

Abstract:

Due to the complexity of the insect environment in the field and the imbalance in the number of samples among insect categories, the existing automatic identification and classification methods for field insects have high misidentification rates and low efficiency. In this paper, a new field insect automatic identification and classification algorithm is developed based on a lightweight deep learning model. First, preprocessing applied to the picture, then those images were input to the lightweight algorithm for feature extraction, and multi-scale feature fusion were adopted to output prediction networks of different sizes; then introduce joint cross-comparison for automatic identification and classification of field insects, and finally compare with the reference The algorithm has been simulated and compared. The results show that the field insect automatic identification and classification of the algorithm in this paper has high accuracy, less time, and strong robustness. It effectively solves the problems of insect accumulation and background interference and can identify field insects in real-time and online.

Key words: pattern recognition, deep learning, object detection, insect classification, lightweight algorithm, image preprocessing

CLC Number: 

  • TP181

Fig.1

Framework of lightweight insect detection and classification model"

Fig.2

Principle of depthwise separable convolution"

Table 1

Network parameters of feature extraction"

类型/步长卷积核尺寸输出尺寸
Conv/s23*3*3*32304*240*32
Conv_dw/s13*3*32304*240*32
Conv_dw/s11*1*32*64304*240*64
Conv_dw/s23*3*64152*120*64
Conv_dw/s11*1*64*128152*120*128
Conv_dw/s13*3*128152*120*128
Conv_dw/s11*1*128*128152*120*128
Conv_dw/s23*3*12876*60*128
Conv_dw/s11*1*128*25676*60*256
Conv_dw/s13*3*25676*60*256
Conv_dw/s11*1*256*25676*60*256
Conv_dw/s23*3*25638*30*256
Conv_dw/s11*1*256*51238*30*512
Conv_dw/s13*3*51238*30*512
Conv_dw/s11*1*512*51238*30*512
Conv_dw/s23*3*51219*15*512
Conv_dw/s11*1*512*102419*15*1024
Conv_dw/s13*3*102419*15*1024
Conv_dw/s11*1*1024*102419*15*1024

Fig.3

Comparison of prediction results of IoU and GIoU"

Fig.4

Some insect training set samples"

Fig.5

Sample of each classification"

Fig.6

Training loss function curve"

Table 2

Prediction effect of the object detection model in this paper on insects in each test set"

昆虫类别AP/%
均值70.98
Chilo suppressalis70.69
Lepidoptera64.96
Hydrophilidae latreille87.38
Coleoptera71.02
Gryllotalpidae orientalis87.71
Naranga aenescens53.82
Kirkaldyia deyrollei62.04
Cicadellidae70.21

Fig.7

Model detection results in different scenarios"

Fig.8

Model feature extraction layer visualization"

Table 3

Average recognition accuracy, detection speed and model size of different models for insects"

模型mAP/%检查速度/ms参数数量/ 百万模型体积/MB
YOLOv369.275361236
YOLOv3-TINY52.5132933
Faster R-CNN68.19325136532
本文70.9852830

Fig.9

Comparison of prediction results between YOLOV3 and the proposed algorithm"

1 刘海启. 以精准农业驱动农业现代化加速现代农业数字化转型[J]. 中国农业资源与区划,2019,40(1):1-6, 73.
Liu Hai-qi. Driving agricultural modernization with precision agriculture and accelerating digital transformation of modern agriculture[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2019,40(1):1-6, 73.
2 聂娟,孙瑞志,邓雪峰,等. 基于数据世系管理的精准农业不确定性复杂事件处理[J].农业机械学报, 2016, 47(5):245-253.
Nie Juan, Sun Rui-zhi, Deng Xue-feng, et al. Uncertainty complex event processing of precision agriculture based on data lineage management[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016,47(5):245-253.
3 封洪强,姚青. 农业害虫自动识别与监测技术[J].植物保护, 2018,44(5):127-133, 198.
Feng Hong-qiang, Yao Qing. Automatic identification and monitoring technology of agricultural pests[J]. Plant Protection, 2018, 44(5):127-133, 198.
4 张永玲,姜梦洲,俞佩仕,等. 基于多特征融合和稀疏表示的农业害虫图像识别方法[J]. 中国农业科学, 2018, 51(11):2084-2093.
Zhang Yong-ling, Jiang Meng-zhou, Yu Pei-shi, et al. Image recognition of agricultural pests based on multi feature fusion and sparse representation [J]. China Agricultural Science, 2018,51(11):2084-2093.
5 马子骥,卢浩,董艳茹. 双通道单图像超分辨率卷积神经网络[J].吉林大学学报:工学版,2019,49(6):2089-2097.
Ma Zi-ji, Lu Hao, Dong Yan-ru. Dual channel single image super-resolution convolution neural network[J]. Journal of Jilin University(Engineering and Technology Edition), 2019,49(6): 2089-2097.
6 周爱明,马鹏鹏,席天宇,等. 基于深度学习的蝴蝶科级标本图像自动识别[J]. 昆虫学报,2017,60(11):1339-1348.
Zhou Ai-ming, Ma Peng-peng, Xi Tian-yu, et al. Automatic image recognition of butterflies based on deep learning[J]. Acta Entomology, 2017,60(11):1339-1348.
7 Cheng Xi, Zhang You-hua, Chen Ju-qiong, et al. Pest identification via deep residual learning in complex background[J]. Computers and Electronics in Agriculture,2017,141:351-356.
8 张银松,赵银娣,袁慕策. 基于改进Faster-RCNN算法的粘虫板图像昆虫识别与计数[J]. 中国农业大学学报, 2019,24(5):115-122.
Zhang Yin-song, Zhao Yin-di, Yuan Mu-ce. Insect recognition and counting based on improved FAST-RCNN model in the image of armyworm board[J]. Journal of China Agricultural University, 2019,24(5):115-122.
9 郭继昌,吴洁,郭春乐,等. 基于残差连接卷积神经网络的图像超分辨率重构[J]. 吉林大学学报:工学版, 2019, 49(5):1726-1734.
Guo Ji-chang, Wu Jie, Guo Chun-le, et al. Image super-resolution reconstruction based on residual connected convolutional neural network[J]. Journal of Jilin University(Engineering and Technology Edition), 2019,49(5):1726-1734.
10 Huang J, Rathod V, Sun C, et al. Speed/accuracy trade-offs for modern convolutional object detectors[C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, 2017, 3296-3297.
11 王毅,刘波,熊龙烨,等. 基于深度学习的果园道路导航线生成算法研究[J]. 湖南农业大学学报:自然科学版,2019,45(6):674-678.
Wang Yi, Liu Bo, Xiong Long-ye, et al. Research on algorithm of orchard road navigation line generation based on deep learning[J]. Journal of Hunan Agricultural University(Natural Sciences), 2019,45(6):674-678.
12 吴天舒,张志佳,刘云鹏,等. 基于改进SSD的轻量化小目标检测算法[J]. 红外与激光工程,2018,47(7):47-53.
Wu Tian-shu, Zhang Zhi-jia, Liu Yun-peng, et al. Lightweight small target detection algorithm based on improved SSD [J]. Infrared and Laser Engineering, 2018,47(7): 47-53.
13 于长东,毕晓君,韩阳,等. 基于轻量化深度学习模型的粒子图像测速研究[J]. 光学学报, 2020, 40(1):1-15.
Yu Chang-dong, Bi Xiao-jun, Han Yang, et al. Particle image velocimetry based on lightweight deep learning model[J]. Acta optica Sinica, 2020, 40(1):1-15.
14 吴天舒,张志佳,刘云鹏,等. 结合YOLO检测和语义分割的驾驶员安全带检测[J]. 计算机辅助设计与图形学学报,2019,31(1):126-131.
Wu Tian-shu, Zhang Zhi-jia, Liu Yun-peng, et al. Driver safety belt detection combined with YOLO detection and semantic segmentation[J]. Journal of Computer-Aided Design & Computer Graphics, 2019,31(1):126-131.
15 杨观赐,杨静,苏志东,等. 改进的YOLO特征提取算法及其在服务机器人隐私情境检测中的应用[J]. 自动化学报,2018,44(12):2238-2249.
Yang Guan-ci, Yang Jing, Su Zhi-dong, et al. Improved Yolo feature extraction algorithm and its application in privacy situation detection of service robots[J]. Acta Automatica Sinica, 2018,44(12):2238-2249.
16 彭明霞,夏俊芳,彭辉. 融合FPN的Faster R-CNN复杂背景下棉田杂草高效识别方法[J]. 农业工程学报,2019,35(20):202-209.
Peng Ming-xia, Xia Jun-fang, Peng Hui. Fast R-CNN based on FPN for efficient weed identification in cotton field[J]. Journal of Agricultural Engineering, 2019, 35(20): 202-209.
17 Fu Yi-hao, Aldrich C. Froth image analysis by use of transfer learning and convolutional neural networks[J]. Minerals Engineering, 2018, 115:68-78.
18 Ren S, He K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6):1137-1149.
19 Peng Chao, Xiao Te-te, Li Ze-ming, et al. MegDet: a large mini-batch object detector[C]∥IEEE Conference on Computer Vision and Pattern Recognition, UTAH, USA, 2018:6181-6189.
[1] Zhen SONG,Jun-liang LI,Gui-qiang LIU. Constant flow prediction method of variable speed hydraulic power source based on deep learning and limitation fuzzy [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1106-1110.
[2] Jin-qing LI,Jian ZHOU,Xiao-qiang DI. Learning optical image encryption scheme based on CycleGAN [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1060-1066.
[3] Tao XU,Ke MA,Cai-hua LIU. Multi object pedestrian tracking based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 27-38.
[4] Fu LIU,Lu LIU,Tao HOU,Yun LIU. Night road image enhancement method based on optimized MSR [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 323-330.
[5] Hong-wei ZHAO,Xiao-han LIU,Yuan ZHANG,Li-li FAN,Man-li LONG,Xue-bai ZANG. Clothing classification algorithm based on landmark attention and channel attention [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1765-1770.
[6] Hua CHEN,Wei GUO,Jing-wen YAN,Wen-hao ZHUO,Liang-bin WU. A new deep learning method for roads recognition from SAR images [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1778-1787.
[7] Chang-fu ZONG,Long WEN,Lei HE. Object detection based on Euclidean clustering algorithm with 3D laser scanner [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 107-113.
[8] Xiang-jiu CHE,Hua-luo LIU,Qing-bin SHAO. Fabric defect recognition algorithm based onimproved Fast RCNN [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2038-2044.
[9] Qian XU,Ying LI,Gang WANG. Pedestrian-vehicle detection based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1661-1667.
[10] Feng⁃wen ZHAI,Jian⁃wu DANG,Yang⁃ping WANG,Jing JIN,Wei⁃wei LUO. Extended contour⁃based fast affine invariant feature extracting [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1345-1356.
[11] Li⁃min GUO,Xin CHEN,Tao CHEN. Radar signal modulation type recognition based on AlexNet model [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 1000-1008.
[12] LIU Fu, LAN Xu-teng, HOU Tao, KANG Bing, LIU Yun, LIN Cai-xia. Metagenomic clustering method based on k-mer frequency optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1593-1599.
[13] YANG Chao-yu, LI Ce, LIANG Yin-cheng, YANG Feng. Blurred object detection based on improved particle filter in coal mine underground surveilance [J]. 吉林大学学报(工学版), 2017, 47(6): 1976-1985.
[14] SUN Ting, QI Ying-chun, GENG Guo-hua. Moving object detection algorithm based on frame difference and background subtraction [J]. 吉林大学学报(工学版), 2016, 46(4): 1325-1329.
[15] LI Di-fei, TIAN Di, HU Xiong-wei. A method of deep learning based on distributed memory computing [J]. 吉林大学学报(工学版), 2015, 45(3): 921-925.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!