Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (2): 318-328.doi: 10.13229/j.cnki.jdxbgxb20200856
Jin-hua WANG1,2,3(),Jia-wei HU1,Jie CAO1,4,Tao HUANG5
CLC Number:
1 | Amirat Y, Benbouzid M E H, Al-Ahmar E, et al. A brief status on condition monitoring and fault diagnosis in wind energy conversion systems[J]. Renewable & Sustainable Energy Reviews, 2009, 13(9): 2629-2636. |
2 | Tian Z, Jin T, Wu B, et al. Condition based maintenance optimization for wind power generation systems under continuous monitoring[J]. Renewable Energy, 2011, 36(5): 1502-1509. |
3 | Umamaheswari R, Maheswari R U. Trends in non-stationary signal processing techniques applied to vibration analysis of wind turbine drive train—a contemporary survey[J]. Mechanical Systems & Signal Processing, 2017, 85: 296-311 |
4 | Fan J, Zhu Z C, Wei L. An improved VMD with empirical mode decomposition and its application in incipient fault detection of rolling bearing[J]. IEEE Access, 2018, 6: 44483-44493. |
5 | Pang B, Tang G, Tian T, et al. Rolling bearing fault diagnosis based on an improved HTT transform[J]. Sensors, 2018, 18(4): 1203-1211. |
6 | Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings Mathematical Physical & Engineering Ences, 1998, 454(1971): 903-995. |
7 | Liu B, Riemenschneider S, Xu Y. Gearbox fault diagnosis using empirical mode decomposition and Hilbert spectrum[J]. Mechanical Systems & Signal Processing, 2006, 20(3): 718-734. |
8 | Smith J S. The local mean decomposition and its application to EEG perception data[J]. Journal of the Royal Society Interface, 2005, 2(5): 443-454. |
9 | Liu W Y, Gao Q W, Ye G, et al. A novel wind turbine bearing fault diagnosis method based on integral extension LMD[J]. Measurement, 2015, 74: 70-77. |
10 | Gao W, Wai R J, Qiao S P, et al. Mechanical faults diagnosis of high-voltage circuit breaker via hybrid features and integrated extreme learning machine[J], IEEE Access, 2019, 7: 60091-60103. |
11 | 黄鑫, 张小栋, 刘洪成, 等. 涡轮叶片早期裂纹的三维叶尖间隙EEMD能量熵融合诊断方法[J]. 航空动力学报, 2020, 35(5): 918-927. |
Huang Xin, Zhang Xiao-dong, Liu Hong-cheng, et al. Approach to early crack diagnosis of turbine blade based on EEMD energy entropy fusion of three-dimensional tip clearance[J]. Journal of Aerospace Power, 2020, 5: 918-927. | |
12 | Wu Z H, Huang N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41. |
13 | 徐艳春, 高永康, 李振兴, 等. 改进LMD算法在微电网电能质量扰动信号检测中的应用[J]. 电网技术, 2019, 43(1): 332-339. |
Xu Yan-chun, Gao Yong-kang, Li Zhen-xing, et al. Application of improved LMD algorithm in signal detection of power quality disturbance in microgrid[J]. Power System Technology, 2019, 43(1): 332-339. | |
14 | Dragomiretskiy K, Zosso D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544. |
15 | 刘秀丽, 徐小力, 吴国新, 等. 基于变分模态分解的故障弱信息提取方法[J]. 华中科技大学学报: 自然科学版, 2020, 48(7): 117-121. |
Liu Xiu-li, Xu Xiao-li, Wu Guo-xin, et al. Extraction method of weak fault information based on variational mode decomposition[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2020, 48(7): 117-121. | |
16 | 姚晰童, 代煜, 张建勋, 等. 陡脉冲干扰下的心电信号滤波及QRS提取[J]. 工程科学学报, 2020, 42(5): 654-662. |
Yao Xi-tong, Dai Yu, Zhang Jian-xun, et al. ECG filtering and QRS extraction under steep pulse interference[J]. Chinese Journal of Engineering, 2020, 42(5): 654-622. | |
17 | 李华, 伍星, 刘韬, 等. 基于信息熵优化变分模态分解的滚动轴承故障特征提取[J]. 振动与冲击, 2018, 37(23): 219-225. |
Li Hua, Wu Xing, Liu Tao, et al. Bearing fault feature extraction based on VMD optimized with information entropy[J]. Journal of Vibration and Shock, 2018, 37(23): 219-225. | |
18 | 谷然, 陈捷, 洪荣晶, 等. 基于改进自适应变分模态分解的滚动轴承微弱故障诊断[J]. 振动与冲击, 2020, 39(8): 1-7, 22. |
Gu Ran, Chen Jie, Hong Rong-jing, et al. Early fault diagnosis of rolling bearings based on adaptive variational mode decomposition and the Teager energy operator[J]. Journal of Vibration and Shock, 2020, 39(8): 1-7, 22. | |
19 | 刘建昌, 权贺, 于霞, 等. 基于参数优化VMD和样本熵的滚动轴承故障诊断[J/OL]. [2020-08-27]. |
20 | 焦博隆, 钟志贤, 刘翊馨, 等. 基于蝙蝠算法优化的变分模态分解的转子裂纹检测方法[J]. 振动与冲击, 2020, 39(6): 98-103, 124. |
Jiao Bo-long, Zhong Zhi-xian, Liu Yi-xin, et al. Rotor crack detection method based on variational mode decomposition based on optimization parameters of bat algorithm[J]. Journal of Vibration and Shock, 2020, 39(6): 98-103, 124. | |
21 | Mirjalili S, Mirjalili S M, Lewis A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. |
22 | Gu R, Chen J, Hong R J, et al. Incipient fault diagnosis of rolling bearings based on adaptive variational mode decomposition and Teager energy operator[J]. Measurement, 2020, 14: 106941. |
23 | Huang G B, Zhou H, Ding X, et al. Extreme learning machine for regression and multiclass classification[J]. IEEE Transactions on Systems Man & Cybernetics Part B, 2012, 42(2): 513-529. |
24 | Zhao Z, Chen Z, Chen Y, et al. A class incremental extreme learning machine for activity recognition[J]. Cognitive Computation, 2014, 6(3): 423-431. |
25 | Laddada S, Si-Chaib M O, Benkedjouh T, et al. Tool wear condition monitoring based on wavelet transform and improved extreme learning machine[J]. ARCHIVE Proceedings of the Institution of Mechanical Engineers Part C, Journal of Mechanical Engineering Science, 2020, 234(5): 095440621988854. |
26 | Qiao S P, Gao W, Wai R J, et al. A method of mechanical fault feature extraction for high-voltage circuit breaker via CEEMDAN and weighted time-frequency entropy[C]∥4th International Conference on Intelligent Green Building and Smart Grid, Yichang, 2019: 25-29. |
27 | Chen X J, Yang Y M, Cui Z X, et al. Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy[J]. Energy, 2019, 174: 1100-1109. |
28 | Zhang X L, Yan Q, Yang J, et al. An assembly tightness detection method for bolt-jointed rotor with wavelet energy entropy[J]. Measurement, 2019, 136:212-244. |
29 | Li J C. A novel recognition algorithm based on holder coefficient theory and interval gray relation classifier[J]. Ksii Transactions on Internet & Information Systems, 2015, 9(11): 4573-4584. |
30 | Li H, Fan B, Jia R, et al. Research on multi-domain fault diagnosis of gearbox of wind turbine based on adaptive variational mode decomposition and extreme learning machine algorithms[J]. Energies, 2020, 13(6): 1-20. |
[1] | Shao-jiang DONG,Peng ZHU,Xue-wu PEI,Yang LI,Xiao-lin HU. Fault diagnosis of rolling bearing under variable operating conditions based on subdomain adaptation [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 288-295. |
[2] | Xiao⁃lei CHEN,Yong⁃feng SUN,Ce LI,Dong⁃mei LIN. Stable anti⁃noise fault diagnosis of rolling bearing based on CNN⁃BiLSTM [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 296-309. |
[3] | Dan-tong OUYANG,Bi-ge ZHANG,Nai-yu TIAN,Li-ming ZHANG. Fail data reduction algorithm combining configuration checking with local search [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2144-2153. |
[4] | Lao-hu YUAN,Dong-shan LIAN,Liang ZHANG,Yi LIU. Fault diagnosis of key mechanical components of aircraft based on densenet and support vector machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1635-1641. |
[5] | Wei LI,Jian CHEN,Shan-yong TAO. Method of enhancing stochastic resonance signal of self⁃adaptive coupled periodic potential system [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1091-1096. |
[6] | Dan-tong OUYANG,Yang LIU,Jie LIU. Fault diagnosis method based on test set under fault response guidance [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1017-1025. |
[7] | Feng-wen PAN,Dong-liang GONG,Ying GAO,Ming-wei XU,Bin MA. Fault diagnosis of current sensor based on linearization model of lithium ion battery [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 435-441. |
[8] | Gen-bao ZHANG,Hao LI,Yan RAN,Qiu-jin LI. A transfer learning model for bearing fault diagnosis [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1617-1626. |
[9] | WANG De-jun, WEI Wei-li, BAO Ya-xin. Actuator fault diagnosis of ESC system considering crosswind interference [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1548-1555. |
[10] | MAO Yu-ze, WANG Li-qin. Influence of squirrel-cage flexible support on the dynamic performance of ball bearing [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1508-1514. |
[11] | SONG Da-feng, LI Guang-han, ZHANG Lin, PAN Bing, ZENG Xiao-hua, PENG Yu-jun, WANG Qing-nian. Application of fuzzy mathematics in fault diagnosis of motor of hybrid vehicle [J]. 吉林大学学报(工学版), 2016, 46(2): 354-359. |
[12] | OUYANG Dan-tong,CHI Jin-jin,WANG Xiao-yu,ZHAO Xiang-fu ,MENG Xiang-yu. Approach of diagnosis of higher-order discrete event systems [J]. 吉林大学学报(工学版), 2015, 45(2): 562-568. |
[13] | SONG Bao-yu,XIE Zhi-jie,ZHANG Feng,WANG Rui-ze,HAO Ming-hui,SU Dai-zhong. Fault diagnosis algorithm for helical gear rotating at low speed on angular domain synchronous average and order tracking analysis [J]. 吉林大学学报(工学版), 2015, 45(2): 454-459. |
[14] | WU Jian, ZHAO Yang, HE Rui. Fault detection and diagnosis of EMB sensor system based on SVR [J]. 吉林大学学报(工学版), 2013, 43(05): 1178-1183. |
[15] | HAO Yan, WANG Tai-yong, WAN Jian, ZHANG Pan, LIU Lu. Mechanical fault diagnosis based on empirical mode decomposition and generalized dimension [J]. 吉林大学学报(工学版), 2012, 42(02): 392-396. |
|