Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (2): 318-328.doi: 10.13229/j.cnki.jdxbgxb20200856

Previous Articles    

Multi⁃fault diagnosis of rolling bearing based on adaptive variational modal decomposition and integrated extreme learning machine

Jin-hua WANG1,2,3(),Jia-wei HU1,Jie CAO1,4,Tao HUANG5   

  1. 1.College of Electrical & Information Engineering,Lanzhou University of Technology,Lanzhou 730050,China
    2.Key Laboratory of Gansu Advanced Control for Industrial Processes,Lanzhou University of Technology,Lanzhou 730050,China
    3.National Experimental Teaching Center of Electrical and Control Engineering,Lanzhou University of Technology,Lanzhou 730050,China
    4.Engineering Research Center of Manufacturing Information of Gansu Province,Lanzhou 730050,China
    5.China Municipal Engineering Northwest Design and Research Institute Co. ,Ltd. ,Lanzhou 730000,China
  • Received:2020-11-06 Online:2022-02-01 Published:2022-02-17

Abstract:

In view of the difficulty of feature extraction and low classification accuracy in the diagnosis of rolling bearing multiple faults, this paper starts from the two aspects of effective feature extraction and fault classification accuracy, and combines the method of variational modal decomposition (VMD) and extreme learning machine (ELM). An adaptive method for diagnosing multiple faults of rolling bearings is presented. Aiming at the situation that VMD parameters need to be manually set in advance, which leads to poor signal decomposition, the Gray Wolf Algorithm (GWO) is proposed to optimize VMD to achieve adaptively obtaining the best decomposition parameters k and α. Furthermore, in order to overcome the problem of low classification accuracy of a single ELM model and unstable classification results, an integrated extreme learning machine (IELM) is proposed to realize the classification and recognition of multiple faults, and improve the accuracy and stability of fault classification. First, use GWO to optimize VMD and obtain the best decomposition parameters adaptively; Secondly, select and extract the time-frequency feature vector of the modal signal; Finally, input the feature vector into IELM for training and classification. Experiments show that this method can adaptively decompose signals and produce the best decomposing effect, realizing accurate early warning and identification of rolling bearing faults.

Key words: fault diagnosis, gray wolf optimization, variational mode decomposition, integrated extreme learning machine, rolling bearing

CLC Number: 

  • TP277

Fig.1

GWOVMD algorithm for flow chart"

Fig.2

Simulation signal diagram"

Fig.3

Mode of EMD decomposition"

Fig.4

Mode of EEMD decomposition"

Fig.5

Mode of VMD decomposition optimized by GWO"

Fig.6

Flow chart of rolling bearing fault diagnosis based on adaptive VMD and IELM"

Fig.7

Test platform"

Table 1

Data set"

数据集类型负载/HP转速/(r·min-1故障尺寸/cm
A正常217500.017 78
内圈
滚动体
外圈
B内圈017970.017 78
11772
21750
31730
C内圈217500.017 78
0.035 56
0.053 34
0.071 12

Table 2

GWOVMD decomposition of best parameters"

状态kα
正常94860
内圈4585
滚动体65170
外圈106726

Table 3

Correlation coefficient screening modal signal"

项目正常内圈外圈滚动体
IMF10.510.270.050.13
IMF20.290.410.080.24
IMF30.780.660.070.47
IMF40.220.630.290.59
IMF50.09-0.370.67
IMF60.05-0.390.16
IMF70.04-0.65-
IMF80.03-0.62-
IMF90.03-0.08-
IMF10--0.08-

Fig.8

Test sample classification accuracy of data set"

Table 4

Accuracies of five fault diagnosis methods %"

方法数据集A数据集B数据集C
EEMD-ELM93.7591.2588.75
EEMD-IELM98.7597.5093.75
自适应VMD-ELM97.5096.2590.00
文献[3098.7596.2590.00
自适应VMD-IELM100.00100.0098.75
1 Amirat Y, Benbouzid M E H, Al-Ahmar E, et al. A brief status on condition monitoring and fault diagnosis in wind energy conversion systems[J]. Renewable & Sustainable Energy Reviews, 2009, 13(9): 2629-2636.
2 Tian Z, Jin T, Wu B, et al. Condition based maintenance optimization for wind power generation systems under continuous monitoring[J]. Renewable Energy, 2011, 36(5): 1502-1509.
3 Umamaheswari R, Maheswari R U. Trends in non-stationary signal processing techniques applied to vibration analysis of wind turbine drive train—a contemporary survey[J]. Mechanical Systems & Signal Processing, 2017, 85: 296-311
4 Fan J, Zhu Z C, Wei L. An improved VMD with empirical mode decomposition and its application in incipient fault detection of rolling bearing[J]. IEEE Access, 2018, 6: 44483-44493.
5 Pang B, Tang G, Tian T, et al. Rolling bearing fault diagnosis based on an improved HTT transform[J]. Sensors, 2018, 18(4): 1203-1211.
6 Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings Mathematical Physical & Engineering Ences, 1998, 454(1971): 903-995.
7 Liu B, Riemenschneider S, Xu Y. Gearbox fault diagnosis using empirical mode decomposition and Hilbert spectrum[J]. Mechanical Systems & Signal Processing, 2006, 20(3): 718-734.
8 Smith J S. The local mean decomposition and its application to EEG perception data[J]. Journal of the Royal Society Interface, 2005, 2(5): 443-454.
9 Liu W Y, Gao Q W, Ye G, et al. A novel wind turbine bearing fault diagnosis method based on integral extension LMD[J]. Measurement, 2015, 74: 70-77.
10 Gao W, Wai R J, Qiao S P, et al. Mechanical faults diagnosis of high-voltage circuit breaker via hybrid features and integrated extreme learning machine[J], IEEE Access, 2019, 7: 60091-60103.
11 黄鑫, 张小栋, 刘洪成, 等. 涡轮叶片早期裂纹的三维叶尖间隙EEMD能量熵融合诊断方法[J]. 航空动力学报, 2020, 35(5): 918-927.
Huang Xin, Zhang Xiao-dong, Liu Hong-cheng, et al. Approach to early crack diagnosis of turbine blade based on EEMD energy entropy fusion of three-dimensional tip clearance[J]. Journal of Aerospace Power, 2020, 5: 918-927.
12 Wu Z H, Huang N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.
13 徐艳春, 高永康, 李振兴, 等. 改进LMD算法在微电网电能质量扰动信号检测中的应用[J]. 电网技术, 2019, 43(1): 332-339.
Xu Yan-chun, Gao Yong-kang, Li Zhen-xing, et al. Application of improved LMD algorithm in signal detection of power quality disturbance in microgrid[J]. Power System Technology, 2019, 43(1): 332-339.
14 Dragomiretskiy K, Zosso D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544.
15 刘秀丽, 徐小力, 吴国新, 等. 基于变分模态分解的故障弱信息提取方法[J]. 华中科技大学学报: 自然科学版, 2020, 48(7): 117-121.
Liu Xiu-li, Xu Xiao-li, Wu Guo-xin, et al. Extraction method of weak fault information based on variational mode decomposition[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2020, 48(7): 117-121.
16 姚晰童, 代煜, 张建勋, 等. 陡脉冲干扰下的心电信号滤波及QRS提取[J]. 工程科学学报, 2020, 42(5): 654-662.
Yao Xi-tong, Dai Yu, Zhang Jian-xun, et al. ECG filtering and QRS extraction under steep pulse interference[J]. Chinese Journal of Engineering, 2020, 42(5): 654-622.
17 李华, 伍星, 刘韬, 等. 基于信息熵优化变分模态分解的滚动轴承故障特征提取[J]. 振动与冲击, 2018, 37(23): 219-225.
Li Hua, Wu Xing, Liu Tao, et al. Bearing fault feature extraction based on VMD optimized with information entropy[J]. Journal of Vibration and Shock, 2018, 37(23): 219-225.
18 谷然, 陈捷, 洪荣晶, 等. 基于改进自适应变分模态分解的滚动轴承微弱故障诊断[J]. 振动与冲击, 2020, 39(8): 1-7, 22.
Gu Ran, Chen Jie, Hong Rong-jing, et al. Early fault diagnosis of rolling bearings based on adaptive variational mode decomposition and the Teager energy operator[J]. Journal of Vibration and Shock, 2020, 39(8): 1-7, 22.
19 刘建昌, 权贺, 于霞, 等. 基于参数优化VMD和样本熵的滚动轴承故障诊断[J/OL]. [2020-08-27].
20 焦博隆, 钟志贤, 刘翊馨, 等. 基于蝙蝠算法优化的变分模态分解的转子裂纹检测方法[J]. 振动与冲击, 2020, 39(6): 98-103, 124.
Jiao Bo-long, Zhong Zhi-xian, Liu Yi-xin, et al. Rotor crack detection method based on variational mode decomposition based on optimization parameters of bat algorithm[J]. Journal of Vibration and Shock, 2020, 39(6): 98-103, 124.
21 Mirjalili S, Mirjalili S M, Lewis A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61.
22 Gu R, Chen J, Hong R J, et al. Incipient fault diagnosis of rolling bearings based on adaptive variational mode decomposition and Teager energy operator[J]. Measurement, 2020, 14: 106941.
23 Huang G B, Zhou H, Ding X, et al. Extreme learning machine for regression and multiclass classification[J]. IEEE Transactions on Systems Man & Cybernetics Part B, 2012, 42(2): 513-529.
24 Zhao Z, Chen Z, Chen Y, et al. A class incremental extreme learning machine for activity recognition[J]. Cognitive Computation, 2014, 6(3): 423-431.
25 Laddada S, Si-Chaib M O, Benkedjouh T, et al. Tool wear condition monitoring based on wavelet transform and improved extreme learning machine[J]. ARCHIVE Proceedings of the Institution of Mechanical Engineers Part C, Journal of Mechanical Engineering Science, 2020, 234(5): 095440621988854.
26 Qiao S P, Gao W, Wai R J, et al. A method of mechanical fault feature extraction for high-voltage circuit breaker via CEEMDAN and weighted time-frequency entropy[C]∥4th International Conference on Intelligent Green Building and Smart Grid, Yichang, 2019: 25-29.
27 Chen X J, Yang Y M, Cui Z X, et al. Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy[J]. Energy, 2019, 174: 1100-1109.
28 Zhang X L, Yan Q, Yang J, et al. An assembly tightness detection method for bolt-jointed rotor with wavelet energy entropy[J]. Measurement, 2019, 136:212-244.
29 Li J C. A novel recognition algorithm based on holder coefficient theory and interval gray relation classifier[J]. Ksii Transactions on Internet & Information Systems, 2015, 9(11): 4573-4584.
30 Li H, Fan B, Jia R, et al. Research on multi-domain fault diagnosis of gearbox of wind turbine based on adaptive variational mode decomposition and extreme learning machine algorithms[J]. Energies, 2020, 13(6): 1-20.
[1] Shao-jiang DONG,Peng ZHU,Xue-wu PEI,Yang LI,Xiao-lin HU. Fault diagnosis of rolling bearing under variable operating conditions based on subdomain adaptation [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 288-295.
[2] Xiao⁃lei CHEN,Yong⁃feng SUN,Ce LI,Dong⁃mei LIN. Stable anti⁃noise fault diagnosis of rolling bearing based on CNN⁃BiLSTM [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 296-309.
[3] Dan-tong OUYANG,Bi-ge ZHANG,Nai-yu TIAN,Li-ming ZHANG. Fail data reduction algorithm combining configuration checking with local search [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2144-2153.
[4] Lao-hu YUAN,Dong-shan LIAN,Liang ZHANG,Yi LIU. Fault diagnosis of key mechanical components of aircraft based on densenet and support vector machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1635-1641.
[5] Wei LI,Jian CHEN,Shan-yong TAO. Method of enhancing stochastic resonance signal of self⁃adaptive coupled periodic potential system [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1091-1096.
[6] Dan-tong OUYANG,Yang LIU,Jie LIU. Fault diagnosis method based on test set under fault response guidance [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1017-1025.
[7] Feng-wen PAN,Dong-liang GONG,Ying GAO,Ming-wei XU,Bin MA. Fault diagnosis of current sensor based on linearization model of lithium ion battery [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 435-441.
[8] Gen-bao ZHANG,Hao LI,Yan RAN,Qiu-jin LI. A transfer learning model for bearing fault diagnosis [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1617-1626.
[9] WANG De-jun, WEI Wei-li, BAO Ya-xin. Actuator fault diagnosis of ESC system considering crosswind interference [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1548-1555.
[10] MAO Yu-ze, WANG Li-qin. Influence of squirrel-cage flexible support on the dynamic performance of ball bearing [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1508-1514.
[11] SONG Da-feng, LI Guang-han, ZHANG Lin, PAN Bing, ZENG Xiao-hua, PENG Yu-jun, WANG Qing-nian. Application of fuzzy mathematics in fault diagnosis of motor of hybrid vehicle [J]. 吉林大学学报(工学版), 2016, 46(2): 354-359.
[12] OUYANG Dan-tong,CHI Jin-jin,WANG Xiao-yu,ZHAO Xiang-fu ,MENG Xiang-yu. Approach of diagnosis of higher-order discrete event systems [J]. 吉林大学学报(工学版), 2015, 45(2): 562-568.
[13] SONG Bao-yu,XIE Zhi-jie,ZHANG Feng,WANG Rui-ze,HAO Ming-hui,SU Dai-zhong. Fault diagnosis algorithm for helical gear rotating at low speed on angular domain synchronous average and order tracking analysis [J]. 吉林大学学报(工学版), 2015, 45(2): 454-459.
[14] WU Jian, ZHAO Yang, HE Rui. Fault detection and diagnosis of EMB sensor system based on SVR [J]. 吉林大学学报(工学版), 2013, 43(05): 1178-1183.
[15] HAO Yan, WANG Tai-yong, WAN Jian, ZHANG Pan, LIU Lu. Mechanical fault diagnosis based on empirical mode decomposition and generalized dimension [J]. 吉林大学学报(工学版), 2012, 42(02): 392-396.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!