Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (5): 1635-1641.doi: 10.13229/j.cnki.jdxbgxb20200702

Previous Articles    

Fault diagnosis of key mechanical components of aircraft based on densenet and support vector machine

Lao-hu YUAN1(),Dong-shan LIAN1,Liang ZHANG2,Yi LIU3   

  1. 1.College of Aerospace Engineering,Shenyang Aerospace University,Shenyang 110136,China
    2.Beijing Institute of Aerospace Systems Engineering,Beijing 100076,China
    3.Beijing Machinery Industry Automation Research Institute Co. ,Ltd. ,Beijing 100120,China
  • Received:2020-09-14 Online:2021-09-01 Published:2021-09-16

Abstract:

Aiming at the difficulty of deep feature extraction in the shallow learning methods of rotating machinery fault diagnosis and the problem of the small number of available fault samples in practical engineering, a rotating machinery fault diagnosis method based on densely connected convolutional network (DenseNet) and support vector machine (SVM) is proposed, which provides a new idea for the fault diagnosis of key mechanical components of aircraft. First, the continuous wavelet transform(CWT) is used to convert vibration signal segments into time-frequency image samples. Then, the experimental samples are input into the DenseNet model for feature extraction. Finally, the extracted features are used for the training of SVM, so as to realize the fault diagnosis of rotating machinery. The simulation results show that the proposed method has higher diagnostic performance than other advanced models, which proves the effectiveness and feasibility of the method.

Key words: aeronautical engineering, densely connected convolutional network, support vector machine, aircraft, mechanical components, fault diagnosis

CLC Number: 

  • V267

Fig.1

Experiment flowchart"

Fig.2

Data partition"

Fig.3

Image conversion"

Fig.4

Architecture of DenseNet model"

Table 1

Gearbox sample categories description"

故障类型实测转速/ (r·min-1

训练/测试

样本个数

类别号
正常88030/81
大齿轮点蚀88030/82
大齿轮断齿87830/83
小齿轮磨损88130/84

Fig.5

Fault diagnosis result"

Table 2

Diagnostic accuracy and training time of each model"

模型准确率/%训练时间/s
本文99.68±0.87105.29
标准DenseNet92.05±1.132028.00
标准SVM84.38±12.526.07

Table 3

Diagnostic result of each model"

类别方法诊断准确率/%
浅层学习BPNN89.06
PNN96.88
GWO-KELM95.58
深度学习SDAE95.17
本文99.68

Table 4

Description of CWRU dataset sample types"

故障类型破坏直径/mm样本个数类别号
轴承正常0.0000761
内圈故障0.1778762
0.3556763
0.5334764
0.7112765
滚动体故障0.1778766
0.3556767
0.5334768
0.7112769
外圈故障0.17787610
0.35567611
0.53347612

Table 5

Diagnostic accuracy of proposed method and other methods"

方法样本类型准确率/%
CNN-HMM原始数据98.125
DAFD频域信号94.730
DGNN频域信号97.810
ResNet-SVM时频图像98.750
本文模型时频图像99.060
1 The data comes from the PlaneCrashInfo.com database[EB/OL]. (2019-06-30). [2020-09-04].
2 Zhao Y P, Wang J J, Li X Y, et al. Extended least squares support vector machine with applications to fault diagnosis of aircraft engine[J]. ISA Transactions, 2020, 97: 189-201.
3 张翔, 姜爽, 赵岩, 等. 飞行器电源系统故障可观测性研究[J]. 电源技术, 2019, 43(3): 412-414.
Zhang Xiang, Jiang Shuang, Zhao Yan, et al. Research on fault observability for aircraft power system[J]. Chinese Journal of Power Sources, 2019, 43(3): 412-414.
4 肖东, 江驹, 余朝军, 等. 基于EEMD分解和多分类支持向量机的飞行器舵面系统故障诊断[J]. 电光与控制, 2018, 25(8): 93-97.
Xiao Dong, Jiang Ju, Yu Chao-jun, et al. Fault diagnosis of aircraft actuator system based on EEMD and multi-class SVM[J]. Electronics Optics & Control, 2018, 25(8): 93-97.
5 李国龙, 李彪, 蒋林, 等. 基于HHT和IPSO算法优化RBF神经网络的滚刀磨损状态识别方法[J]. 吉林大学学报: 工学版, 2020, 50(6): 1998-2009.
Li Guo-long, Li Biao, Jiang Lin, et al. Hob wear recognition method based on HHT and IPSO-RBF neural network[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(6): 1998-2009.
6 Yan X A, Jia M P. A novel optimized SVM classification algorithm with multi-domain feature and its application to fault diagnosis of rolling bearing[J]. Neurocomputing, 2018, 313: 47-64.
7 Fujiyoshi H, Hirakawa T, Yamashita T. Deep learning-based image recognition for autonomous driving[J]. IATSS Research, 2019, 43(4): 244-252.
8 Khedkar S, Shinde S. Deep learning and ensemble approach for praise or complaint classification[J]. Procedia Computer Science, 2020, 167: 449-458.
9 Li Y, Zhang T, Sun S Y, et al. Accelerating flash calculation through deep learning methods[J]. Journal of Computational Physics, 2019, 394: 153-165.
10 姜洪开, 邵海东, 李兴球. 基于深度学习的飞行器智能故障诊断方法[J]. 机械工程学报, 2019, 55(7): 27-34.
Jiang Hong-kai, Shao Hai-dong, Li Xing-qiu. Deep learning theory with application in intelligent fault diagnosis of aircraft[J]. Journal of Mechanical Engineering, 2019, 55(7): 27-34.
11 陈绵书, 于录录, 苏越, 等. 基于卷积神经网络的多标签图像分类[J]. 吉林大学学报: 工学版, 2020, 50(3): 1077-1084.
Chen Mian-shu, Yu Lu-lu, Su Yue, et al. Multi-label images classification based on convolutional neural network[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(3): 1077-1084.
12 Yang Y T, Zheng H L, Li Y B, et al. A fault diagnosis scheme for rotating machinery using hierarchical symbolic analysis and convolutional neural network[J]. ISA Transactions, 2019, 91: 235-252.
13 Huang G, Liu Z, Laurens V D M, et al. Densely connected convolutional networks[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, 2017: 2261-2269.
14 Ahlawat S, Choudhary A. Hybrid CNN-SVM classifier for handwritten digit recognition[J]. Procedia Computer Science, 2020, 167: 2554-2560.
15 祝小彦, 王永杰, 张钰淇, 等. 基于自适应最优Morlet小波的滚动轴承故障诊断[J]. 振动、测试与诊断, 2018, 38(5): 1021-1029, 1085.
Zhu Xiao-yan, Wang Yong-jie, Zhang Yu-qi, et al. Method of incipient fault diagnosis of bearing based on adaptive optimal Morlet wavelet[J]. Journal of Vibration, Measurement & Diagnosis, 2018, 38(5): 1021-1029, 1085.
16 He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, 2016: 770-778.
17 范雪飞. 江苏千鹏诊断工程有限公司齿轮箱故障模拟试验数据[EB/OL]. (2012-06-07). [2020-09-04].
18 CWRU Dataset, Case Western Reserve University Bearing Data Center[EB/OL]. (2012-07-20). [2020-09-04].
19 张阳阳, 贾云献, 吴巍屹, 等. 概率神经网络在车辆齿轮箱典型故障诊断中的应用[J]. 汽车工程, 2020, 42(7): 972-977.
Zhang Yang-yang, Jia Yun-xian, Wu Wei-yi, et al. Application of probabilistic neural network to typical fault diagnosis of vehicle gearbox[J]. Automotive Engineering, 2020, 42(7): 972-977.
20 龙霞飞, 杨苹, 郭红霞, 等. 基于KELM和多传感器信息融合的风电齿轮箱故障诊断[J]. 电力系统自动化, 2019, 43(17): 132-139.
Long Xia-fei, Yang Ping, Guo Hong-xia, et al. Fault diagnosis of wind turbine gearbox based on KELM and multi-sensor information fusion[J]. Automation of Electric Power Systems, 2019, 43(17): 132-139.
21 李松柏, 康子剑, 陶洁. 基于信息融合及堆栈降噪自编码的齿轮故障诊断[J]. 振动与冲击, 2019, 38(5): 216-221.
Li Song-bai, Kang Zi-jian, Tao Jie. Gear fault diagnosis based on information fusion and stacked de-noising auto-encoder[J]. Journal of Vibration and Shock, 2019, 38(5): 216-221.
22 Wang S H, Xiang J W, Zhong Y T, et al. Convolutional neural network-based hidden Markov models for rolling element bearing fault identification[J]. Knowledge-Based Systems, 2018, 144: 65-76.
23 Lu W N, Liang B, Cheng Y, et al. Deep model based domain adaptation for fault diagnosis[J]. IEEE Transactions on Industrial Electronics, 2017, 64(3): 2296-2305.
24 Li X, Zhang W, Ding Q. Cross-domain fault diagnosis of rolling element bearings using deep generative neural networks[J]. IEEE Transactions on Industrial Electronics, 2019, 66(7): 5525-5534.
25 Yuan L H, Lian D S, Kang X, et al. Rolling bearing fault diagnosis based on convolutional neural network and support vector machine[J]. IEEE Access, 2020, 8: 395-406.
[1] Wei LI,Jian CHEN,Shan-yong TAO. Method of enhancing stochastic resonance signal of self⁃adaptive coupled periodic potential system [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1091-1096.
[2] Dan-tong OUYANG,Yang LIU,Jie LIU. Fault diagnosis method based on test set under fault response guidance [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1017-1025.
[3] Kang WANG,Meng YAO,Li-ben LI,Jian-qiao LI,Xiang-jin DENG,Meng ZOU,Long XUE. Mechanical performance identification for lunar soil in lunar surface sampling [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1146-1152.
[4] Feng-wen PAN,Dong-liang GONG,Ying GAO,Ming-wei XU,Bin MA. Fault diagnosis of current sensor based on linearization model of lithium ion battery [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 435-441.
[5] Gen-bao ZHANG,Hao LI,Yan RAN,Qiu-jin LI. A transfer learning model for bearing fault diagnosis [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1617-1626.
[6] Xiong-fei LI,Jing WANG,Xiao-li ZHANG,Tie-hu FAN. Multi-focus image fusion based on support vector machines and window gradient [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 227-236.
[7] Yuan-li GU, Yuan ZHANG, Xiao-ping RUI, Wen-qi LU, Meng LI, Shuo WANG. Short⁃term traffic flow prediction based on LSSVMoptimized by immune algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1852-1857.
[8] Hong-wei ZHAO,Ming-zhao LI,Jing LIU,Huang-shui HU,Dan WANG,Xue-bai ZANG. Scene classification based on degree of naturalness and visual feature channels [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1668-1675.
[9] Guang YAN,Jian-zhong LU,Kai-yu ZHANG,Fan-yong MENG,Lian-qing ZHU. Temperature decoupling large range fiber Bragg grating strain sensor [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1682-1688.
[10] Yang LU,Shi-gang WANG,Wen-ting ZHAO,Yan ZHAO. Facial expression recognition based on separability assessment of discrete Shearlet transform [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1715-1725.
[11] Jin⁃gang ZHAO,Ming ZHANG,Yu⁃lin ZHAN,Ming⁃zhi XIE. Damage criterion of reinforced concrete pier based on plastic strain energy density [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1124-1133.
[12] Yi YANG,Si⁃cai WANG,Ying NAN. Optimal algorithm of searching route for large amphibious aircraft [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 963-971.
[13] Jun CHEN,Qi⁃feng ZHANG,Ai⁃qun ZHANG,Du⁃si CAI. In⁃situ autonomous observation method based onhadal fish recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 953-962.
[14] WANG De-jun, WEI Wei-li, BAO Ya-xin. Actuator fault diagnosis of ESC system considering crosswind interference [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1548-1555.
[15] KUI Hai-lin, BAO Cui-zhu, LI Hong-xue, LI Ming-da. Idling time prediction method based on least square support vector machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1360-1365.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!