Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (2): 433-438.doi: 10.13229/j.cnki.jdxbgxb20211146

Previous Articles    

Fault analysis of machining center based on gray theory

Ying-zhi ZHANG1,2,Sheng-dong HOU1,2,Zhi-qiong WANG1,2(),Ren-hao DONG1,2,Sheng YANG1,2   

  1. 1.Key Laboratory of CNC Equipment Reliability,Ministry of Education,Jilin University,Changchun 130022,China
    2.College of Mechanical and Aerospace Engineering,Jilin University,Changchun 130022,China
  • Received:2021-10-30 Online:2022-02-01 Published:2022-02-17
  • Contact: Zhi-qiong WANG E-mail:1094267138@qq.com

Abstract:

Based on the traditional FMECA analysis due to the right of indicators and subjective determination of the probability of failure impact, an improved fault analysis method is proposed. Applying the least squares, adjacent matrix, Pagerank, statistical analysis, etc. to evaluate the probability of failure, fault impact, fault repair time, according to which the grey theory is introduced to construct the albino function of each indicator and calculate the evaluation value, form the index evaluation matrix, calculate the index weight based on entropy weighting method, apply the weighted average method to calculate and evaluate the failure risk. Take a domestic processing center as an example for method application, compared with traditional methods to verify the effectiveness of the proposed method.

Key words: machining center, fault analysis, gray theory, entropy right method, weighted average method

CLC Number: 

  • TG659

Fig.1

Fault analysis schematic based on gray theory"

Fig.2

Machining center fault transmission diagram"

Fig.3

Directed graph of machining center fault transfer"

Table 1

Degree of impact of failure of machining center subsystem"

子系统CI值子系统CI值
主轴系统0.0847刀库系统0.0625
进给系统0.0625数控系统0.0858
液压系统0.0902电气系统0.2194
气动系统0.0902润滑系统0.0991
冷却系统0.0714排屑系统0.0714
防护系统0.0625

Table 2

Parameter estimation and D test of interval between failures of machining center subsystem"

子系统序号子系统α?β?D检验
1主轴系统542.1990.7340.081
2刀库系统675.8470.9080.054
3进给系统538.9650.7540.053
4数控系统880.4810.9830.137
5液压系统126.2190.9170.091
6电气系统651.0560.6710.089
7气动系统1323.7480.6650.112
8润滑系统1101.4030.9030.147
9冷却系统756.5180.6760.136
10排屑系统546.8530.6380.159
11防护系统721.5990.5790.090

Table 3

Probability of failure of 1000 h machining center subsystem"

子系统故障概率子系统故障概率
主轴系统0.7914刀库系统0.7600
进给系统0.7968数控系统0.6780
液压系统0.9987电气系统0.7365
气动系统0.5639润滑系统0.6001
冷却系统0.7011排屑系统0.7700
防护系统0.7012

Table 4

Failure service time of machining center subsystem"

子系统故障维修 时间/h子系统故障维修 时间/h
主轴系统87.68刀库系统89.68
进给系统59.68数控系统51.24
液压系统58.36电气系统34.98
气动系统56.76润滑系统26.43
冷却系统69.12排屑系统42.71
防护系统46.20

Fig.4

Analytical indicator albino function"

Table 5

Comprehensive risk value for subsystem failures in machining center"

子系统综合风险值排名危害度数值排名
主轴系统3.87210.000 1345
刀库系统3.60820.000 2892
进给系统2.71050.000 3691
数控系统2.35070.000 0607
液压系统3.39930.000 2743
电气系统2.56560.000 1036
气动系统2.26380.000 0598
润滑系统1.569110.000 04211
冷却系统2.85440.000 04310
排屑系统2.16690.000 2044
防护系统1.992100.000 0519
1 Du Yan-bin, Liao Lan, Wang Le-su. Failure mode, effects and criticality analysis of remanufactured machine tools in service[J]. International Journal of Precision Engineering and Manufacturing, 2017, 18(3): 425-434.
2 Nikhil M, Vasu V, Rao P. Failure mode identification and prioritization using FMECA: a study on computer numerical control lathe for predictive maintenance[J]. Journal of Failure Analysis and Prevention, 2019, 19(4): 1153-1157.
3 王晓峰, 申桂香, 张英芝, 等. 基于改进危害度和DEMATEL方法的abc轴进给系统的故障排序[J]. 吉林大学学报: 工学版, 2012, 42(1): 122-127.
Wang Xiao-feng, Shen Gui-xiang, Zhang Ying-zhi, et al. Priortizing failures of abc-axis feeding systems based on improved criticality and DEMATEL method[J]. Journal of Jilin University(Engineering and Technology Edition), 2012, 42(1): 122-127.
4 Gianpaolo B, Alessandro S, Antonio F, et al. AHP-IFM target: an innovative method to define reliability target in an aerospace prototype based on analytic hierarchy process[J]. Quality & Reliability Engineering International, 2017, 33(8): 1731-1751.
5 安相华, 于靖博, 蔡卫国. 基于混合多属性决策和关联分析的模糊粗糙FMEA评估方法[J]. 计算机集成制造系统, 2016, 22(11): 2613-2621.
An Xiang-hua, Yu Jing-bo, Cai Wei-guo. Fuzzy rough FMEA evaluation method ba sed on hybrid multi-attribute decision and correlation analysis[J]. Computer Integrated Manufacturing Systems, 2016, 22(11): 2613-2621.
6 戴城国, 王晓红, 张新, 等. 基于模糊综合评判的电液伺服阀FMECA[J]. 北京航空航天大学学报, 2011, 37(12): 1575-1578.
Dai Cheng-guo, Wang Xiao-hong, Zhang Xin, et al. Fuzzy comprehensive evaluation in FMECA of electro-hydraulic servo valve[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(12): 1575-1578.
7 Hu Chen-liu, Jian Xin-you, You Xiao-yue, et al. A novel approach for failure mode and effects analysis using combination weighting and fuzzy VIKOR method[J]. Applied Soft Computing Journal, 2015, 28: 579-588.
8 Wang Hao, Zhang Yi-min, Yang Zhou. A risk evaluation method to prioritize failure modes based on failure data and a combination of fuzzy sets theory and grey theory[J]. Engineering Applications of Artificial Intelligence, 2019, 82: 216-225.
9 申桂香, 张英芝, 薛玉霞, 等. 基于熵权法的数控机床可靠性综合评价[J]. 吉林大学学报: 工学版, 2009, 39(5): 1208-1211.
Shen Gui-xiang, Zhang Ying-zhi, Xue Yu-xia, et al. Comprehensive evaluation of reliability of CNC machine tool based on entropy rights method[J]. Journal of Jilin University(Engineering and Technology Edition), 2009, 39(5): 1208-1211.
10 荣峰. 基于故障率相关的加工中心的可靠性及风险评估[D]. 长春: 吉林大学机械与航空航天工程学院, 2015.
Rong Feng. Reliability and risk assessment of machining center based on failure rate correlation[D]. Changchun: College of Mechanical and Aerospace Engineering, Jilin University, 2015.
[1] Li-ping WANG,Bin ZHU,Jun WU,Zi-han TAO. Fault analysis of circular tool magazine based on Bayesian network [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 280-287.
[2] Hai-ji YANG,Jia-long HE,Guo-fa LI,Li-ding WANG,Si-yuan WANG. Application of improved failure mode and effect analysis method in risk analysis of spindle system of machining center [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 345-352.
[3] Gui-xiang SHEN,Lan LUAN,Ying-zhi ZHANG,Li-ming MU,Shu-bin LIANG. Fault propagation impact assessment of machining center components [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 63-69.
[4] YANG Zhao-jun, YANG Chuan-gui, CHEN Fei, HAO Qing-bo, ZHENG Zhi-tong, WANG Song. Parameter estimation of reliability model of machining center based on particle swarm optimization and support vector regression [J]. 吉林大学学报(工学版), 2015, 45(3): 829-836.
[5] WANG Xiao-feng, SHEN Gui-xiang, ZHANG Ying-zhi, GU Dong-wei, LI Huai-yang, LIU Wei. Prioritizing failures of abc-axis feeding systems based on improved criticality and DEMATEL method [J]. 吉林大学学报(工学版), 2012, 42(01): 122-127.
[6] WANG Xiao-feng, SHEN Gui-xiang, ZHANG Ying-zhi, ZHANG Li-min, WANG Zhi-qiong, LIU Wei. Simulation of reliability and maintainability influence of machining center [J]. 吉林大学学报(工学版), 2011, 41(增刊1): 160-163.
[7] WANG Xiao-feng,SHEN Gui-xiang,ZHANG Ying-zhi,CHEN Bing-kun,LI Huai-yang. Analysis on risk priority number of critical component of machining center based on group decision-making and various assignment ways [J]. 吉林大学学报(工学版), 2011, 41(6): 1630-1635.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!