Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (8): 1850-1856.doi: 10.13229/j.cnki.jdxbgxb20210607
Hong-wei ZHAO1(),Jian-rong ZHANG1,Jun-ping ZHU2(),Hai LI1
CLC Number:
1 | Lowe D G. Distinctive image features from scale-invariant key points[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. |
2 | 赵宏伟, 霍东升, 王洁, 等. 基于显著性检测的害虫图像分类[J]. 吉林大学学报: 工学版, 2021, 51(6): 2174-2181. |
Zhao Hong-wei, Huo Dong-sheng, Wang Jie,et al. Image classification of insect pests based on saliency detection[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2174-2181. | |
3 | 许骞艺, 秦贵和, 孙铭会, 等.基于改进的ResNeSt驾驶员头部状态分类算法[J].吉林大学学报: 工学版, 2021, 51(2): 704-711. |
Xu Qian-yi, Qin Gui-he, Sun Ming-hui, et al. Classification of drivers' head status based on improved ResNeSt[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 704-711. | |
4 | Yu Y, Li X, Liu F. Attention GANs: unsupervised deep feature learning for aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(1): 519-531. |
5 | Lin D, Fu K, Wang Y, et al. MARTA GANs: unsupervised representation learning for remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 14(11): 2092-2096. |
6 | Geoffrey E H, Simon O, Yee-Whye T. A fast-learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554. |
7 | Diederik P K, Max W. Auto-encoding variational bayes[J]. arXiv Preprint arXiv:. |
8 | Chen T, Kornblith S, Norouzi M, et al. A simple framework for contrastive learning of visual representations[C]∥In Proceedings of the International Conference on Machine Learning, Australia, 2020: 10709-10719. |
9 | He K, Fan H, Wu Y, et al. Momentum contrast for unsupervised visual representation learning[C]∥In Proceedings of the Conference on Computer Vision and Pattern Recognition, Los Alamitos, 2020: 9729-9738. |
10 | He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]∥In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, 2016: 770-778. |
11 | Wu Z, Xiong Y, Yu S, et al. Unsupervised feature learning via non-parametric instance discrimination[C]∥In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Los Alamitos, 2018: 3733-3742. |
12 | Yang Y, Newsam S. Bag-of-visual-words and spatial extensions for land-use classification[C]∥Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, San Jose, 2010: 270-279. |
13 | Cheng G, Han J, Lu X. Remote sensing image scene classification: benchmark and state of the art[J]. Proceedings of the IEEE, 2017, 105(10): 1865-1883. |
14 | Xia G S. AID: a benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3965-3981. |
15 | Qi B, Kun Q, Zhang H, et al. APDC-Net: attention pooling-based convolutional network for aerial scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 15(10): 1603-1607. |
16 | Sun H, Li S, Zheng X, et al. Remote sensing scene classification by gated bidirectional network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(1): 82-96. |
17 | Tan M, Le Q V. EfficientNet: rethinking model scaling for convolutional neural networks[C]∥In International Conference on Machine Learning, Long Beach, 2019: 10691-10700. |
[1] | Huai-jiang YANG,Er-shuai WANG,Yong-xin SUI,Feng YAN,Yue ZHOU. Simplified residual structure and fast deep residual networks [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1413-1421. |
[2] | Xiang-jun LI,Jie-ying TU,Zhi-bin ZHAO. Validity classification of melting curve based on multi⁃scale fusion convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 633-639. |
[3] | Liang DUAN,Chun-yuan SONG,Chao LIU,Wei WEI,Cheng-ji LYU. State recognition in bearing temperature of high-speed train based on machine learning algorithms [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 53-62. |
[4] | Qian-yi XU,Gui-he QIN,Ming-hui SUN,Cheng-xun MENG. Classification of drivers' head status based on improved ResNeSt [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 704-711. |
[5] | Xiang-jiu CHE,Hua-luo LIU,Qing-bin SHAO. Fabric defect recognition algorithm based onimproved Fast RCNN [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2038-2044. |
[6] | CHEN Mian-shu, SU Yue, SANG Ai-jun, LI Pei-peng. Image classification methods based on space vector model [J]. 吉林大学学报(工学版), 2018, 48(3): 943-951. |
[7] | CHEN Zai-qing, SHI Jun-sheng, BAI Feng-xiang. Automatic image classification based on fuzzy-rough set [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 209-212. |
[8] | WANG Ying, GUO Lei, LIANG Nan. Classification algorithm of hyperspectral images based on kernel entropy analysis [J]. , 2012, (06): 1597-1601. |
[9] | LIU Ping-ping, ZHAO Hong-wei, GENG Qing-tian, DAI Jin-bo. Image classification method based on local feature and visual cortex recognition mechanism [J]. 吉林大学学报(工学版), 2011, 41(05): 1401-1406. |
[10] | Cao Chun-hong Zhang Bin,Li Xiao-lin . Medical image classification technology based on fuzzy support vector machine [J]. 吉林大学学报(工学版), 2007, 37(03): 630-0633. |
|