Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (12): 2845-2851.doi: 10.13229/j.cnki.jdxbgxb20211297

Previous Articles     Next Articles

Evaluation algorithm of rail transit node importance based on rough set theory

Ting-ping ZHANG(),Di WAN   

  1. School of Information Science & Engineering,Chongqing Jiaotong University,Chognqing 400074,China
  • Received:2021-11-29 Online:2022-12-01 Published:2022-12-08

Abstract:

In order to better protect the important traffic nodes, a rail transit node importance evaluation algorithm based on rough set theory was proposed. For the uncertain passenger flow factors in each node of rail transit, the boundary domain concept was used to clearly describe the fuzzy data. The knowledge of the sorted concept sets and elements was reduced, decision rules was added to complete the information solution. The size of node passenger flow was judged,the node weight was determined by knowledge entropy, and the node importance was evaluated from three dimensions: node centrality, node proximity centrality, and node order centrality. The experiment proves that the evaluation time of the proposed algorithm is within 3 s, the evaluation time is short, and the evaluation result is accurate.

Key words: rough set theory, rail transit, network node, importance evaluation, passenger flow factors, node centrality

CLC Number: 

  • U491.13

Fig.1

Comparison of the maximum circulation branches of the network after removing the first five important nodes under different methods"

Fig.2

Comparison of changes in the largest circulation branch of rail transit network after removing the first five important nodes in turn"

Fig.3

Evaluation time of traffic node importance under different methods"

1 张喜平, 李永树, 刘刚, 等. 节点重要度贡献的复杂网络节点重要度评估方法[J]. 复杂系统与复杂性科学, 2014, 11(3): 26-32, 49.
Zhang Xi-ping, Li Yong-shu, Liu Gang, et al. Evaluation method of importance for nodes in complex networks based on importance contribution[J]. Complex Systems and Complexity Science, 2014,11(3): 26-32, 49.
2 张才斌, 游昊, 李本瑜, 等. 计及拓扑结构和运行状态的支路重要度评估方法[J]. 电力系统自动化, 2017, 41(7): 15-20.
Zhang Cai-bin, You Hao, Li Ben-yu, et al. Assessment method of branch importance considering topological structure and operation state[J]. Power System Automation, 2017,41(7): 15-20.
3 李军, 王秋莉. KPCA-KELM在短期交通流量预测中的应用[J]. 江苏大学学报:自然科学版, 2018, 39(5): 570-575.
Li Jun, Wang Qiu-li. Application of KPCA-KELM in short-term traffic flow prediction[J]. Journal of Jiangsu University(Natural Science Edition), 2018, 39(5): 570-575.
4 董哲伟, 徐永能. 轨道交通十字换乘车站缓冲区域的优化设计[J]. 江苏大学学报:自然科学版, 2019, 40(1): 8-15, 21.
Dong Zhe-wei, Xu Yong-neng. Optimization design of passenger flow buff area for crossover interchange urban rail station[J]. Journal of Jiangsu University(Natural Science Edition), 2019, 40(1): 8-15, 21.
5 黎枫,刘欣然. 粗糙集理论在旅游突发事件应急响应中的应用[J]. 技术经济, 2019, 38(3): 78-87.
Li Feng, Liu Xin-ran. Application of rough set theory in tourism emergency response[J]. Technical Economy, 2019, 38(3): 78-87.
6 林琳, 陈志英. 基于粗糙集神经网络和振动信号的高压断路器机械故障诊断[J].电工技术学报,2020, 35(): 277-283.
Lin Lin, Chen Zhi-ying. Mechanical fault diagnosis of high voltage circuit breakers based on rough set neural networks and vibration signals[J]. Journal of Electrotechnics, 2020, 35(Sup.1): 277-283.
7 米据生, 陈锦坤. 基于图的粗糙集属性约简方法[J]. 西北大学学报:自然科学版, 2019, 49(4): 508-516.
Mi Ju-sheng, Chen Jin-kun. Graph-based approaches for attribute reduction in rough sets[J]. Journal of Northwest University (Natural Science Edition), 2019, 49(4): 508-516.
8 邵为爽, 李晓红, 张天抒,等. 基于粗糙集理论的数据挖掘技术及应用[J]. 煤炭技术, 2019, 38(6): 152-154.
Shao Wei-shuang, Li Xiao-hong, Zhang Tian-shu, et al. Datamining technology and its application based on rough set theory[J]. Coal Technology, 2019, 38(6): 152-154.
9 刘富春, 赵毅澎, 赵锐. 基于粗糙集理论的离散事件系统不透明性的验证算法[J]. 控制理论与应用,2019,36(8):1259-1264.
Liu Fu-chun, Zhao Yi-peng, Zhao Rui. Verification algorithm for opacity of discrete-event systems with rough set theory[J]. Control Theory and Application, 2019, 36(8): 1259-1264.
10 薛锋, 何传磊, 黄倩. 成都地铁网络的关键节点识别方法及性能分析[J]. 中国安全科学学报, 2019, 29(1): 93-99.
Xue Feng, He Chuan-lei, Huang Qian. Identification of key nodes in chengdu metro network and analysis of network performance[J]. Chinese Journal of Safety Science, 2019, 29(1): 93-99.
11 王安,顾益军. 基于社区划分的节点重要性评估方法[J]. 计算机工程与应用, 2020, 56(8): 42-48.
Wang An, Gu Yi-jun. Nodes importance ranking method based on community detection[J]. Computer Engineering and Application, 2020,56(8): 42-48.
12 程子轩,乔木. 物联网入侵的最优通信节点选取算法[J]. 吉林大学学报:理学版, 2019, 57(4): 903-909.
Cheng Zi-xuan, Qiao Mu. Optimal communication node selection algorithm for intrusion of internet of things[J]. Journal of Jilin University (Science Edition), 2019, 57(4): 903-909.
13 张强, 曹军海, 宋太亮,等. 基于合度的装备保障网络节点重要性评估[J]. 系统仿真学报, 2019, 31(12): 2657-2663.
Zhang Qiang, Cao Jun-hai, Song Tai-liang, et al. Evaluation method of node importance in equipment support network based on polymeric degree[J]. Journal of System Simulation, 2019, 31(12): 2657-2663.
14 谭阳红, 张婧, 李肖. 基于复杂网络理论的电网节点重要度评估[J]. 计算机工程, 2019, 45(11): 281-286, 297.
Tan Yang-hong, Zhang Jing, Li Xiao. Importance evaluation of power grid nodes based on complex network theory[J]. Computer Engineering, 2019,45(11): 281-286, 297.
15 琚倩茜, 姜红丙. 城市轨道交通工程关键接口识别方法研究[J]. 铁道科学与工程学报, 2020, 17(10): 2672-2679.
Ju Qian-qian, Jiang Hong-bing. Research on key interface points identification for metro projects[J]. Journal of Railway Science and Engineering, 2020,17(10): 2672-2679.
16 梁青槐, 柴树山, 钟思敏, 等. 城市轨道交通站点网络结构综合重要度识别[J]. 铁道工程学报, 2019, 36(9): 66-71.
Liang Qing-huai, Chai Shu-shan, Zhong Si-min, et al. Identification of comprehensive importance of urban rail transit stations in network structure[J]. Journal of Railway Engineering, 2019, 36(9): 66-71.
17 李国栋, 王鹏. 基于作战环的作战体系节点重要性评价方法[J]. 火力与指挥控制, 2019, 44(8): 7-11.
Li Guo-dong, Wang Peng. Node importance evaluation for operation system of systems based on operation loop[J]. Firepower and Command and Control, 2019, 44(8): 7-11.
18 王迎, 郭宇婷, 田宗忠. 基于TOPSIS模型的城市群公路枢纽节点重要度评价[J]. 公路, 2019, 64(8): 141-145.
Wang Ying, Guo Yu-ting, Tian Zong-zhong. Importance evaluation of highway hub nodes in urban agglomeration based on TOPSIS model[J]. Highway, 2019, 64(8): 141-145.
19 李炅菊, 黄宏光, 舒勤. 相依网络理论下电力通信网节点重要度评价[J]. 电力系统保护与控制, 2019, 47(11): 143-150.
Li Ji-ju, Huang Hong-guang, Shu Qin. Evaluation method for node importance in power telecommunication network based on interdependent network theory[J]. Power System Protection and Control, 2019, 47(11): 143-150.
20 吕彪, 高自强, 刘一骝. 道路交通系统韧性及路段重要度评估[J].交通运输系统工程与信息,2020, 20(2): 114-121.
Lv Biao, Gao Zi-qiang, Liu Yi-liu. Evaluation of road transportation system resilience and link importance[J]. Transportation System Engineering and Information, 2020, 20(2): 114-121.
21 国强, 崔玉强, 王勇. 无线传感器网络中基于动态簇的节点调度算法[J].吉林大学学报:工学版, 2022,52(6):1466-1476.
Guo Qiang, Cui Yu-qiang, Wang Yong. Nodes scheduling algorithm based on dynamic cluster in wireless sensor network[J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1466-1476.
22 张昕, 王慧慧, 严沛, 等.一种面向多维复杂网络的节点传播重要性算法[J]. 计算机科学, 2019, 46(): 348-353.
Zhang Xin, Wang Hui-hui, Yan Pei, et al. Node propagation importance algorithm for multi-dimensional complex networks[J]. Computer Science, 2019,46(Sup.2): 348-353.
[1] Jing WANG,Feng WAN,Chun-jiao DONG,Chun-fu SHAO. Modelling on catchment area and attraction intensity of urban rail transit stations [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 439-447.
[2] Min MA,Da-wei HU,Lan SHU,Zhuang-lin MA. Resilience assessment and recovery strategy on urban rail transit network [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 396-404.
[3] Feng XUE,Chuan-lei HE,Qian HUANG,Jian LUO. Coordination degree of multimodal rail transit network [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2040-2050.
[4] WANG Fang-rong, GUO Bai-cang, JIN Li-sheng, GAO Lin-lin, YUE Xin-yu. Selection of safe evaluation indexes and weight calculation for secondary task driving [J]. 吉林大学学报(工学版), 2017, 47(6): 1710-1715.
[5] ZHAO Xue-yu, YANG Jia-qi, PENG Ya-mei. Competitive and cooperative relationship evolution mechanism between urban rail transit and traditional bus [J]. 吉林大学学报(工学版), 2017, 47(3): 756-764.
[6] YAO Xiang-ming, ZHAO Peng, YU Dan-dan. Dynamic origin-destination matrix estimation for urban rail transit based on averaging strategy [J]. 吉林大学学报(工学版), 2016, 46(1): 92-99.
[7] CAO Yang, ZHAO Shu-zhi, TIAN Qing-fei. Urban rail transit subsidy policy based on maximum welfare [J]. , 2012, (03): 618-622.
[8] LIN Ci-yun, WANG Lin-hong, GONG Bo-wen, ZHAO Ding-xuan, YANG Zhao-sheng. Analysis of traffic flow reliability operation trend of urban road network under sudden disaster [J]. , 2012, (03): 581-587.
[9] LIU Ying, QIAN Zhi-hong, SUN Da-yang. Node localization scheme for wireless sensor networks based on reference node sequence [J]. 吉林大学学报(工学版), 2012, 42(02): 489-493.
[10] ZHAO Shu-zhi, CAO Yang, TIAN Qing-fei. Urban rail transit scheduling decision based on information fusion [J]. 吉林大学学报(工学版), 2011, 41(增刊1): 85-88.
[11] CHEN Peng|YAN Xin-ping|LI Xu-hong|WU Chao-zhong. Schedule coordination model between rail transit and bus transit [J]. 吉林大学学报(工学版), 2011, 41(4): 950-955.
[12] LIU Ying,QIAN Zhi-hong,WANG Xue,LI Yi-nan. Wireless sensor network centroid localization algorithm based on time difference of arrival [J]. 吉林大学学报(工学版), 2010, 40(01): 245-0249.
[13] XU Wang-tu,HE Shi-wei,SONG Rui. Headway and fare optimization model for feeder bus of rail transit [J]. 吉林大学学报(工学版), 2009, 39(06): 1469-1474.
[14] CAO Shou-hua,YUAN Zhen-zhou,ZHAO Dan. Queuing mechanism of passengers at exit stairs of urban rail transit [J]. 吉林大学学报(工学版), 2009, 39(06): 1463-1468.
[15] Yang Li-ya;Shao Chun-fu . Integrated forecasting model for real estate price along urban rail transit based on BP neural network and Markov chain [J]. 吉林大学学报(工学版), 2008, 38(03): 514-0519.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Zhang Peng,Li Yuan-chun . Modeling and control for the system of two manipulators in handling
flexible payload based on hinge configuration
[J]. 吉林大学学报(工学版), 2008, 38(02): 444 -0448 .
[2] Liu Zong-wei,Wang Deng-feng,Jiang Ji-guang,Liang Jie,Wang Shi-gang . Improving sound quality inside vehicle by
active noise control method
[J]. 吉林大学学报(工学版), 2008, 38(02): 258 -0262 .
[3] SUN Wan-chen, WANG Zong-shu,LI Guo-liang,LIU Zhong-chang,XIE Fang-xi, YANG Ji-rui . Effects of fuel cetane number on emissions from a turbocharged and
intercooled diesel engine under transient operating conditions
[J]. 吉林大学学报(工学版), 2008, 38(04): 791 -796 .
[4] Li You-de, Liu Wei,Li Jing,Zhao Jian,Song Da-feng,Sha Hong-liang . Hardware-in-loop-simulation of vehicle stability control system[J]. 吉林大学学报(工学版), 2007, 37(04): 737 -740 .
[5] Lin Yi,Yan Lei,Tong Qing-xi . Optimum trajectory planning in characteristic areas for underwater
aided navigation correlation matching algorithms
[J]. 吉林大学学报(工学版), 2008, 38(02): 439 -0443 .
[6] YU Duo-nian, ZOU Ji1,WANG Deng-feng,WANG Jian-yong. Analysis of topological optimization on optimal heavy truck cab's spot weld layout[J]. 吉林大学学报(工学版), 2009, 39(增刊2): 264 -0268 .
[7] Peng Ya-ping1,Guo Ying-nan, Huang Wei-jun,Tan Man-zhi,Dong Lei,Wang Zhi-wei . Cyclebycycle variation of ethanol homogeneous
charge compression ignition combustion
[J]. 吉林大学学报(工学版), 2007, 37(02): 301 -0306 .
[8] LIU Shun-an;HU Qing-yu . Application of PSO-BP network algorithm in optimization of automotive suspension[J]. 吉林大学学报(工学版), 2009, 39(03): 571 -0575 .
[9] SI Jing-jing,ZHUANG Bo-jin,CAI An-ni. Network coding based lifetime maximization in wireless sensor network[J]. 吉林大学学报(工学版), 2011, 41(03): 822 -827 .
[10] GUO Li-dong,TAN Zhen-fan,WEI Yan-hui. Compoundaxis macromicro control and modeling of laser weapon tracking system[J]. 吉林大学学报(工学版), 2011, 41(03): 859 -864 .