Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (6): 2040-2050.doi: 10.13229/j.cnki.jdxbgxb20200701

Previous Articles    

Coordination degree of multimodal rail transit network

Feng XUE1,2(),Chuan-lei HE3,Qian HUANG4,Jian LUO5()   

  1. 1.School of Transportation and Logistics,Southwest Jiaotong University,Chengdu 611756,China
    2.National United Engineering Laboratory of Integrated and Intelligent Transportation,Southwest Jiaotong University,Chengdu 611756,China
    3.China Railway First Survey and Design Institute Group Co. ,Ltd. ,Xi'an 710043,China
    4.China Railway Xi'an Group Co. ,Ltd. ,Xi'an 710054,China
    5.School of Automobile and Transportation,Xihua University,Chengdu 610039,China
  • Received:2020-09-14 Online:2021-11-01 Published:2021-11-15
  • Contact: Jian LUO E-mail:xuefeng.7@163.com;0120100001@mail.xhu.edu.cn

Abstract:

To study the coupling relationship between multi-standard rail transit sub-network systems, the topological index value and the coupling coordination degree are calculated based on the complex network theory, and then the multi-standard composite network is constructed. The change of the topological index value of the composite network is studied. The calculation method for the coupling coordination degree of the multi-standard rail transit network is proposed combining factors such as network scale, topology, robustness, transportation capacity, transfer ratio and functional cost. The Chongqing rail transit network (in October 2019) is finally used to do case analysis. The results show that the composite network has a greater average degree and a smaller shortest path length. The coupling degree of the composite network is 0.988, the coordination degree is 0.678, the degree of coupling is high, and the degree of coordination is average. The values of the coupling degree and coordination degree of each index of the four subsystems are quite different, but as the number of systems increases, the overall coupling and coordination degree tends to decrease.

Key words: engineering of communications and transportation system, multimodal rail transit network, complex network, topological structure, evaluation index, coupling coordination degree

CLC Number: 

  • U113

Fig.1

Multimodal rail transit network coupling evaluation index system diagram"

Fig.2

Chongqing multimodal rail transit network topology"

Table 1

Topological index value of each type ofrail transit network"

指标普铁网高铁网市域网城轨网复合网
节点数602012160238
边数592213178255
网络直径46983746
平均度1.972.22.172.152.15
平均路径长度15.703.943.1813.4614.65
平均聚集系数00.1480.1940.0040.011
网络介数0.2530.1630.2180.0790.058
网络效率0.1360.3590.4510.1150.104
网络连通度0.0330.1160.1970.0140.009
自然连通度0.8011.0380.9690.8570.861

Table 2

Raw data of evaluation indexes of couplingcoordination degree of various typesof rail transit networks xgh"

指标普铁网高铁网市域网城轨网
1节点数602012160
2边数592213178
3网络直径469837
4平均度1.972.22.172.15
5平均路径长度15.703.943.1813.46
6平均聚集系数00.1480.1940.004
7网络介数0.2530.1630.2180.079
8网络效率0.1360.3590.4510.115
9网络连通度0.0330.1160.1970.014
10自然连通度0.8011.0380.9690.857
11开行列数12036882250
12编组辆数161688
13定员数123811125361840
14换乘普铁4333924
15换乘高铁19162243
16换乘市域13252141
17换乘地铁22353112
18服务范围15020010030
19速度目标12030016060
20工程造价0.51.6528

Table 3

Standardized data ygh"

指标普铁网高铁网市域网城轨网
1节点数0.3240.0540.0001.000
2边数0.2790.0550.0001.000
3网络直径1.0000.0260.0000.763
4平均度0.0001.0000.8700.783
5平均路径长度0.0000.9391.0000.179
6平均聚集系数0.0000.7631.0000.021
7网络介数1.0000.4830.7990.000
8网络效率0.0630.7261.0000.000
9网络连通度0.1040.5571.0000.000
10自然连通度0.0001.0000.7090.236
11开行列数0.1331.0000.0000.587
12编组辆数1.0001.0000.0000.000
13定员数0.5380.4420.0001.000
14换乘普铁0.0000.8291.0000.571
15换乘高铁0.1110.0000.2221.000
16换乘市域0.0000.4290.2861.000
17换乘地铁0.4351.0000.8260.000
18服务范围0.7061.0000.4120.000
19速度目标0.7500.0000.5831.000
20工程造价1.0000.8470.8000.000

Table 4

Entropy weight method to determine weight wh"

指标权重指标权重
10.0718110.0530
20.0746120.0726
30.0665130.0369
40.0306140.0327
50.0484150.0696
60.0677160.0447
70.0344170.0357
80.0605180.0364
90.0566190.0326
100.0440200.0306

Table 5

Multi-system coupling degree calculation result"

指标双系统耦合三系统耦合四系统耦合
PG*PSPCGSGCSCPGSPGCPSCGSCPGSC
10.7100.4000.8570.8000.4470.2320.4840.5690.3700.2570.361
20.7330.4170.8270.8000.4380.2280.5050.5540.3600.2510.353
30.3360.2410.9910.9430.3810.2750.2190.4740.3800.2600.301
40.3480.3710.3920.9980.9920.9980.4790.4850.4990.9950.574
50.2920.2830.6000.9990.7450.7290.4130.4040.3910.7910.459
60.2720.2391.0000.9910.2720.2390.3780.2070.1750.3780.253
70.9430.9930.3330.9740.4580.3710.9610.4810.4700.5140.566
80.5530.4810.8000.9870.2950.2520.6070.3430.2840.3930.370
90.7290.5870.7000.9600.3430.2600.7010.4440.3280.4070.426
100.2950.3480.5750.9850.7770.8590.4380.4150.4830.8430.503
110.6420.6610.7750.2700.9650.3480.3530.7440.4620.4160.450
121.0000.2310.2310.2310.2311.0000.3560.3560.1670.1670.231
130.9940.4260.9540.4710.9180.3200.5550.9370.4680.4660.564
140.3710.3380.4360.9950.9850.9630.4730.5110.4840.9750.570
150.6290.9530.6070.4840.2360.7620.6170.3130.6560.3550.407
160.4360.5150.2920.9820.9140.8340.5700.4380.4250.8690.527
170.9230.9570.4710.9940.3240.3590.9470.4710.5050.4610.555
180.9870.9630.3780.9110.3240.4840.9400.4660.5220.4700.558
190.3920.9930.9870.4360.3380.9630.5250.4790.9750.4840.575
200.9960.9920.3480.9990.3780.3920.9940.4810.4850.5030.575

Table 6

Calculation result of multi-system coupling coordination degree"

指标双系统耦合三系统耦合四系统耦合
PGPSPCGSGCSCPGSPGCPSCGSCPGSC
10.1000.0690.2030.0490.1300.0930.0660.1370.1090.0820.095
20.0980.0680.1990.0490.1320.0930.0670.1350.1070.0820.094
30.1080.0910.2420.0430.1010.0850.0710.1380.1230.0680.095
40.0750.0720.0710.1700.1670.1610.0980.0960.0920.1640.110
50.0820.0840.0550.2170.1420.1450.1130.0850.0860.1640.109
60.0860.0910.0320.2440.0860.0910.1230.0610.0630.1230.089
70.1570.1750.0770.1460.0640.0720.1580.0900.0990.0880.106
80.1150.1260.0490.2290.0820.0880.1480.0740.0790.1170.102
90.1180.1370.0530.2080.0760.0870.1500.0760.0830.1100.101
100.0820.0750.0590.1930.1450.1340.1050.0860.0820.1540.105
110.1390.0510.1210.0850.2010.0750.0840.1490.0770.1080.102
120.2700.0920.0920.0920.0920.0320.1320.1320.0650.0650.092
130.1340.0680.1660.0650.1570.0780.0820.1500.0940.0920.104
140.0720.0760.0660.1730.1510.1580.0970.0900.0930.1590.107
150.0560.1070.1540.0620.0920.1810.0700.0900.1430.1010.099
160.0660.0600.0820.1250.1710.1560.0790.0980.0920.1500.103
170.1550.1480.0650.1810.0780.0730.1600.0920.0870.1010.108
180.1750.1420.0730.1540.0780.0620.1560.0990.0850.0890.106
190.0710.1480.1690.0660.0760.1580.0890.0950.1560.0930.105
200.1700.1670.0750.1580.0730.0710.1640.0960.0960.0920.110

Fig.3

Calculation result heat map"

Fig.4

Analysis of PGSC four systems coupling coordination"

1 Erdős P, Rényi A. On the evolution of random graphs[J]. Publ Math Inst Hung Acad Sci, 1960, 5(1): 343-347.
2 Watts D J, Strogatz S H. Collective dynamics of small world networks[J]. Nature, 1998, 393(6684):440-442.
3 Barabási A L, Albert R. Emergence of scaling in random networks[J]. Science, 2011, 286(15):509-512.
4 方锦清, 汪小帆, 郑志刚, 等. 一门崭新的交叉科学: 网络科学(上)[J]. 物理学进展, 2007, 27(3): 239-343.
Fang Jin-qing, Wang Xiao-fan, Zheng Zhi-gang, et al. New interdisciplinary science: network science(I)[J]. Progress in Physics, 2007, 27(3):239-343.
5 Amaral L A N, Scala A, Barthélémy M, et al. Classes of small-world networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(21):11149-11152.
6 Sienkiewicz J, Holyst J A. Public transport systems in Poland: from Bialystok to Zielona Gora by bus and tram using universal statistics of complex networks[J]. Acta Physica Polonica, 2005, 36(5): 1771-1778.
7 Lämmer S, Gehlsen B, Helbing D. Scaling laws in the spatial structure of urban road networks[J]. Physica A Statistical Mechanics & Its Applications, 2006, 363(1): 89-95.
8 张晋, 梁青槐, 贺晓彤. 北京市地铁网络拓扑结构复杂性研究[J]. 北京交通大学学报, 2013, 37(6): 78-84.
Zhang Jin, Liang Qing-huai, He Xiao-tong. Study on the complexity of Beijing metro network[J]. Journal of Beijing Jiaotong University, 2013, 37(6): 78-84.
9 包云, 刘军, 李婷. 中国铁路旅客列车服务网络性质研究[J]. 铁道学报, 2012, 34(12): 8-15.
Bao Yun, Liu Jun, Li Ting. Properties of Chinese railway passenger train service network[J]. Journal of the China Railway Society, 2012, 34(12): 8-15.
10 宗跃光, 陈眉舞, 杨伟, 等. 基于复杂网络理论的城市交通网络结构特征[J]. 吉林大学学报: 工学版, 2009, 39(4): 910-915.
Zong Yue-guang, Chen Mei-wu, Yang Wei, et al. Structure characteristic of urban composite traffic net‐work based on complex network theory[J]. Journal of Jilin University(Engineering and Technology Edition), 2009, 39(4): 910-915.
11 卫振林, 甘杨杰, 赵鹏. 城市复合交通网络的若干特性研究[J]. 交通运输系统工程与信息, 2015, 15(1): 106-111.
Wei Zhen-lin, Gan Yang-jie, Zhao Peng. Characteristic research of urban complex traffic network[J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(1): 106-111.
12 薛锋, 何传磊, 黄倩. 成都地铁网络的关键节点识别方法及性能分析[J]. 中国安全科学学报, 2019, 29(1): 93-99.
Xue Feng, He Chuan-lei, Huang Qian. Key node identification of Chengdu metro network and network performance analysis[J]. China Safety Science Journal, 2019, 29(1):93-99.
13 林鹏飞, 翁剑成, 付宇, 等. 基于刷卡数据的轨道交通加权网络结构特征[J]. 吉林大学学报:工学版, 2020, 50(3): 956-962.
Lin Peng-fei, Weng Jian-cheng, Fu Yu, et al. Structure characteristics of rail transit weighted network based on smart card data[J]. Journal of Jilin University(Engineering and Technology Edition), 2020,50(3):956-962.
14 姜磊, 柏玲, 吴玉鸣. 中国省域经济、资源与环境协调分析——兼论三系统耦合公式及其扩展形式[J]. 自然资源学报, 2017, 32(5): 788-799.
Jiang Lei, Bai Ling, Wu Yu-ming. Coupling and coordinating degrees of provincial economy, resources and environment in China[J]. Journal of Natural Resources, 2017, 32(5):788-799.
15 Tang Z. An integrated approach to evaluating the coupling coordination between tourism and the environment[J]. Tourism Management, 2015, 46: 11-19.
16 黄文成, 帅斌, 庞璐, 等.基于耦合协调度的道路危险品运输系统风险评价[J]. 中国安全科学学报, 2016, 26(6): 117-122.
Huang Wen-cheng, Bin Shuai, Pang Lu, et al. Research on coupling coordination degree based method for assessing risk in road dangerous goods transport system[J]. China Safety Science Journal, 2016, 26(6):117-122.
17 薛锋, 袁野. 基于耦合协调度模型的综合运输体系支撑力研究[J]. 交通运输工程与信息学报, 2018, 16(1): 24-31.
Xue Feng, Yuan Ye. Research on the supporting capability of comprehensive transportation systems using coupling coordinate model[J]. Journal of Transportation Engineering and Information, 2018, 16(1):24-31.
18 徐凤, 朱金福, 杨文东. 高铁-民航复合网络的构建及网络拓扑特性分析[J]. 复杂系统与复杂性科学, 2013, 10(3): 1-11.
Xu Feng, Zhu Jin-fu, Yang Wen-dong. Construction of high-speed railway and airline compound network and the analysis of its network topology characteristics[J]. Complex Systems and Complexity Science, 2013, 10(3): 1-11.
19 杨捷. 基于复杂网络的伏牛山区路网与县域经济协调发展研究[D]. 开封:河南大学环境与规划学院, 2019.
Yang Jie. Research on coordinated development of the road network and the county economy of Funiu mountain area based on complex network[D]. Kaifeng: College of Environment and Planning, Henan University, 2019.
20 蒋洁滢. 区域轨道交通综合运能匹配评价方法研究[J].中国铁路, 2019, 57(9): 90-94.
Jiang Jie-ying. Research on evaluation methods of comprehensive transport capacity matching for regional rail transit[J]. China Railway, 2019, 57(9):90-94.
21 南天伟. 铁路综合客运枢纽衔接方式运营匹配性评价及优化[D]. 北京: 北京交通大学交通运输学院, 2015.
Tian-wei Nan. Study on the evaluation and optimization scheme for passengers'transfer modes in railway transport hub[D]. Beijing: School of Traffic and Transportation, Beijing Jiaotong University, 2015.
22 陈小鸿, 周翔, 乔瑛瑶. 多层次轨道交通网络与多尺度空间协同优化——以上海都市圈为例[J]. 城市交通, 2017, 15(1): 20-30, 37.
Chen Xiao-hong, Zhou Xiang, Qiao Ying-yao. Coordination and optimization of multilevel rail transit network and multi-scale spatial layout: a case study of Shanghai metropolitan area[J]. Urban Transport of China, 2017, 15(1): 20-30, 37.
23 赵国堂, 周诗广. 我国市域铁路发展现状及未来展望[J].中国铁路, 2018,57(8):1-10.
Zhao Guo-tang, Zhou Shi-guang. Today and future of suburban railway in china[J]. China Railway, 2018, 57(8):1-10.
[1] Rong QIAN,Ru ZHANG,Ke-jun ZHANG,Xin JIN,Shi-liang GE,Sheng JIANG. Capsule graph neural network based on global and local features fusion [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1048-1054.
[2] Bo PENG,Yuan-yuan ZHANG,Yu-ting WANG,Ju TANG,Ji-ming XIE. Automatic traffic state recognition from videos based on auto⁃encoder and classifiers [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 886-892.
[3] Dian-hai WANG,Xin-yi SHEN,Xiao-qin LUO,Sheng JIN. Offset optimization with minimum average vehicle delay [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 511-523.
[4] Xian-min SONG,Ming-ye ZHANG,Zhen-jian LI,Xin WANG,Ya-nan ZHANG. Setting of dynamic bus lane and its simulation analysis and evaluation [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1677-1686.
[5] Hong-fei JIA,Xin-ru DING,Li-li YANG. Bi-level programming model for optimization design of tidal lane [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 535-542.
[6] Chao-ying YIN,Chun-fu SHAO,Xiao-quan WANG,Zhi-hua XIONG. Influence of built environment on commuting mode choice considering spatial heterogeneity [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 543-548.
[7] Da-wei ZHANG,Hai-tao ZHU. An optimization⁃based evacuation model considering pedestrian heterogeneity [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 549-556.
[8] Yuan-li GU, Yuan ZHANG, Xiao-ping RUI, Wen-qi LU, Meng LI, Shuo WANG. Short⁃term traffic flow prediction based on LSSVMoptimized by immune algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1852-1857.
[9] Yi-ming BIE,Kai JIANG,Ru-ru TANG,Lin-hong WANG,Xin-yu XIONG. Time of interval partition for traffic control at isolated intersection considering impacts of plan transition [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1844-1851.
[10] Guo-zhu CHENG, Si-he FENG, Tian-jun FENG. Setting condition of on⁃street parking space occupied vehicle lane [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1858-1864.
[11] Quan LIANG,Jian-cheng WENG,Wei ZHOU,Jian RONG. Stability identification of public transport commute passengers based on association rules [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1484-1491.
[12] Hai-bo LONG,Jia-qi YANG,Xue-yu ZHAO. Optimizing vehicles allocation of multimodal coordinated freight transport based on transshipment delay risks [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1492-1499.
[13] Wen⁃jing WU,Run⁃chao CHEN,Hong⁃fei JIA,Qing⁃yu LUO,Di SUN. Collaborative control method of vehicles in U⁃turn zone under environment of cooperative vehicle infrastructure system [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1100-1106.
[14] Zhao⁃wei QU,Zhao⁃tian PAN,Yong⁃heng CHEN,Peng⁃fei TAO,Di SUN. Car⁃following model with improving safety distance based on optimal velocity model [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1092-1099.
[15] Lei CHEN,Jiang⁃feng WANG,Yuan⁃li GU,Xue⁃dong YAN. Multi⁃source traffic data fusion algorithm based onmind evolutionary algorithm optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 705-713.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!