Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (12): 2971-2983.doi: 10.13229/j.cnki.jdxbgxb20210526
Previous Articles Next Articles
CLC Number:
1 | Corman T, Ovsjanikov M, Chambolle A. Supervised descriptor learning for non-rigid shape matching[C]∥European Conference on Computer Vision(ECCV), Switzerland, Zurich, 2014: 283-298. |
2 | Litany O, Remez T, Rodolà E, et al. Deep functional maps: structured prediction for dense shape correspondence[C]∥International Conference on Computer Vision, Venice, Italy, 2017: 5659-5667. |
3 | Chen Q, Koltun V. Robust non-rigid registration by convex optimization[C]∥International Conference on Computer Vision, Chile, Santiago, 2015: 2039-2047. |
4 | Van K, Zhang H, Hamarneh G, et al. A survey on shape correspondence[J]. Computer Graphics Forum, 2011, 30(6): 1681-1707. |
5 | Groueix T, Fisher M, Kim V, et al. 3D-CODED: 3D correspondences by deep deformation[C]∥European Conference on Computer Vision(ECCV), Munich, Germany, 2018: 235-251. |
6 | Gao L, Yang J, Wu T, et al. SDM-NET: deep generative network for structured deformable mesh[J]. ACM Transactions on Graphics, 2019, 38(6): 1-15. |
7 | Wu N, Song S, Khosla A, et al. 3D ShapeNets: a deep representation for volumetric shapes[C]∥IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Boston, USA, 2015: 1912-1920. |
8 | Tan Q, Gao L, Lai Y, et al. Mesh-based autoencoders for localized deformation component analysis[C]∥AAAI Conference on Artificial Intelligence, New Orleans, USA, 2017: 247-263. |
9 | Gong W, Chen L, Michael B, et al. SpiralNet++: a fast and highly efficient mesh convolution operator[C]∥International Conference on Computer Vision, Seoul, Korea, 2019: 4141-4148. |
10 | Fukushima K. Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position[J]. Biological Cybernetics, 1980, 36(4): 193-202. |
11 | Facundo M, Sapiro G. Theoretical and computational framework for isometry invariant recognition of point cloud data[J]. Foundations of Computational Mathematics, 2005, 5(3): 313-347. |
12 | Alexander M, Michael M, Ron K, et al. Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching[J]. Proceedings of the National Academy of Sciences, 2006, 103(5): 1168-1172. |
13 | Rusinkiewicz S, Levoy M. Efficient variants of the ICP algorithm[C]∥Proceedings Third International Conference on 3-D Digital Imaging and Modeling, Quebec, Canada, 2001: 145-152. |
14 | Sun J, Ovsjanikov M, Guibas L. A concise and provably informative multi-scale signature-based on heat diffusion[J]. Computer Graphics Forum, 2009, 28(5): 1383-1392. |
15 | Aubry M, Schlickewei U, Cremers D. The wave kernel signature: a quantum mechanical approach to shape analysis[C]∥International Conference on Computer Vision, Barcelona, Spain, 2011: 1626-1633. |
16 | 杨军, 闫寒, 王茂正. 融合特征描述符约束的3维等距模型对应关系计算[J]. 中国图象图形学报, 2016, 21(5): 628-635. |
Yang Jun, Yan Han, Wang Mao-zheng. Correspondence calculation of 3D isometric model fused with feature descriptor constraints[J]. Journal of Image and Graphics, 2016, 21(5): 628-635. | |
17 | Solomon J, Nguyen A, Butscher A, et al. Soft maps between surfaces[J]. Computer Graphics Forum, 2012, 31(5): 1617-1626. |
18 | Kim V G, Li W, Mitra N J, et al. Exploring collections of 3D models using fuzzy correspondences[J]. ACM Transactions on Graphics, 2012, 31(4): No.54. |
19 | Lipman Y, Funkhouser T A. Mobius voting for surface correspondence[J]. ACM Transactions on Graphics, 2009, 28(3):1-12. |
20 | Ovsjanikov M, Quentin M, Facundo M, et al. One point isometric matching with the heat kernel[J]. Computer Graphics Forum, 2010, 29(5): 1555-1564. |
21 | Masci J, Boscaini D, Bronstein M, et al. Geodesic convolutional neural networks on Riemannian manifolds[C]∥International Conference on Computer Vision, Santiago, Chile, 2015: 37-45. |
22 | Ovsjanikov M, Ben-Chen M, Solomon J, et al. Functional maps: a flexible representation of maps between shapes[J]. ACM Transactions on Graphics, 2012, 31(4): 1-11. |
23 | 杨军, 闫寒. 校准三维模型基矩阵的函数映射的对应关系计算[J]. 武汉大学学报: 信息科学版, 2018, 43(10): 1518-1525. |
Yang Jun, Yan Han. Correspondence calculation of functional maps for calibrating the base matrix of 3D model[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1518-1525. | |
24 | Wu Y, Yang J, Zhao J. Partial 3D shape functional correspondence via fully spectral eigenvalue alignment and upsampling refinement[J]. Computers & Graphics, 2020, 92: 99-113. |
25 | Salti S, Tombari F, Di S. Shot: unique signatures of histograms for surface and texture description[J]. Computer Vision and Image Understanding, 2014, 125(8): 251-264. |
26 | Qi C, Su H, Mo K, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]∥IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Honolulu, Hawaii, USA, 2017: 652-660. |
27 | Lu D, Fang Y. Meta deformation network: meta functional for shape correspondence[C]∥IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Seattle, USA, 2020: 6647-6660. |
28 | Groueix T, Fisher M, Kim V G, et al. Unsupervised cycle-consistent deformation for shape matching[J]. Computer Graphics Forum, 2019, 38(5): 123-133. |
29 | Vestner M, Litman R, Rodola E, et al. Product manifold filter: non-rigid shape correspondence via kernel density estimation in the product space[C]∥IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Honolulu, Hawaii, 2017: 6681-6690. |
30 | Federica B, Javier R, Matthew L, et al. Faust: dataset and evaluation for 3D mesh registration[C]∥IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Columbus, USA, 2014: 3794-3801. |
31 | Varol G, Romero J, Martin X, et al. Learning from synthetic humans[C]∥IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Honolulu, Hawaii, USA, 2017: 109-117. |
32 | Ranjan A, Bolkart T, Sanyal S, et al. Generating 3D faces using convolutional mesh autoencoders[C]∥European Conference on Computer Vision(ECCV), Munich, Germany, 2018: 704-720. |
33 | Zuffi S, Kanazawa A, Jacobs D, et al. 3D menagerie: modeling the 3D shape and pose of animals[C]∥IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Honolulu, Hawaii, USA, 2017: 6365-6373. |
34 | Matthew L, Naureen M, Javier R, et al. Smpl: a skinned multi-person linear model[J]. ACM Transactions on Graphics, 2015, 34(6): 283-298. |
35 | Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. |
36 | Halimi O, Litany O, Rodola E, et al. Unsupervised learning of dense shape correspondence[C]∥IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Long Beach, USA, 2019: 4370-4379. |
37 | Roufosse J M, Sharma A, Ovsjanikov M. Unsupervised deep learning for structured shape matching[C]∥International Conference on Computer Vision, Seoul, Korea, 2019: 5659-5667. |
[1] | Xian-yu QI,Wei WANG,Lin WANG,Yu-fei ZHAO,Yan-peng DONG. Semantic topological map building with object semantic grid map [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 569-575. |
[2] | Xiao-hu SHI,Jia-qi WU,Chun-guo WU,Shi CHENG,Xiao-hui WENG,Zhi-yong CHANG. Residual network based curve enhanced lane detection method [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 584-592. |
[3] | Peng GUO,Wen-chao ZHAO,Kun LEI. Dual⁃resource constrained flexible job shop optimal scheduling based on an improved Jaya algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 480-487. |
[4] | Jin-Zhen Liu,Guo-Hui Gao,Hui Xiong. Multi⁃scale attention network for brain tissue segmentation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 576-583. |
[5] | Gui-he QIN,Jun-feng HUANG,Ming-hui SUN. Text input based on two⁃handed keyboard in virtual environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1881-1888. |
[6] | Fu-heng QU,Tian-yu DING,Yang LU,Yong YANG,Ya-ting HU. Fast image codeword search algorithm based on neighborhood similarity [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1865-1871. |
[7] | Tian BAI,Ming-wei XU,Si-ming LIU,Ji-an ZHANG,Zhe WANG. Dispute focus identification of pleading text based on deep neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1872-1880. |
[8] | Feng-feng ZHOU,Hai-yang ZHU. SEE: sense EEG⁃based emotion algorithm via three⁃step feature selection strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1834-1841. |
[9] | Feng-feng ZHOU,Yi-chi ZHANG. Unsupervised feature engineering algorithm BioSAE based on sparse autoencoder [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1645-1656. |
[10] | Jun WANG,Yan-hui XU,Li LI. Data fusion privacy protection method with low energy consumption and integrity verification [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1657-1665. |
[11] | Sheng-sheng WANG,Lin-yan JIANG,Yong-bo YANG. Transfer learning of medical image segmentation based on optimal transport feature selection [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1626-1638. |
[12] | Yao-long KANG,Li-lu FENG,Jing-an ZHANG,Fu CHEN. Outlier mining algorithm for high dimensional categorical data streams based on spectral clustering [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1422-1427. |
[13] | Wen-jun WANG,Yin-feng YU. Automatic completion algorithm for missing links in nowledge graph considering data sparsity [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1428-1433. |
[14] | Xue-yun CHEN,Xue-yu BEI,Qu YAO,Xin JIN. Pedestrian segmentation and detection in multi-scene based on G-UNet [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 925-933. |
[15] | Shi-min FANG. Multiple source data selective integration algorithm based on frequent pattern tree [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 885-890. |
|