Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (9): 2519-2532.doi: 10.13229/j.cnki.jdxbgxb.20211258

Previous Articles     Next Articles

Suppression characteristics of vehicle⁃bridge coupling vibration of long⁃span cable⁃stayed bridge with resilient wheels

Zhao-wei CHEN(),Qian-hua PU   

  1. Mechatronics and Vehicle Engineering,Chongqing Jiaotong University,Chongqing 400074,China
  • Received:2021-11-23 Online:2023-09-01 Published:2023-10-09

Abstract:

In order to prove the adaptability of the metro train-bridge (especially long-span bridge) system to resilient wheels from the perspective of dynamics, the influence of resilient wheels on the long-span cable-stayed bridge (LSCSB) on the vibration of the metro train-bridge system and its suppression characteristics was studied. Based on the vehicle-track coupling dynamics theory, a coupled dynamic model of metro train-LSCSB system considering resilient wheel was established. Adopting the model, the effect of resilient wheels on the vibration characteristics of metro train and LSCSB under the combined disturbance of long-short wave irregularities was studied, the damping effect of resilient wheel on metro train-LSCSB system is proved from time-frequency domain. The results show that when metro train running through, the resilient wheel can effectively reduce the wheel/rail force, vibration of the wheel and axle box. Compared with the traditional rigid wheel, the vibration of rim is the most intense, followed by the vibration of traditional rigid wheel, and the vibration of web is the smallest. Based on the propesd dynamic parameters of the resilient wheel, the excellent frequency of the resilient wheel vibration is concentrated in 10 Hz to 50 Hz, and there is a peak around 25 Hz. The main frequency of the bridge vertical and lateral vibration is about 1 Hz. The resilient wheels can effectively reduce the mid-low frequency vibrations of LSCSB.

Key words: vehicle engineering, resilient wheel, long-span cable-stayed bridge, time-frequency analysis, vibration reduction

CLC Number: 

  • U24

Fig.1

Dynamics model of the metro train-LSCSB considering resilient wheels"

Fig.2

Force analysis diagram of resilient wheel"

Table 1

Symbols of each force of the resilient wheel"

符 号物理意义
FLFR左、右轮辋所受蠕滑力
NLNR左、右轮辋所受法向力
FhLFhR左、右弹性车轮橡胶悬挂作用力
FfLFfR左、右一系悬挂作用力
Mwg轮对重力

Table 2

Symbols of various parameters of metro vehicles"

符号物理意义
X、Y、Z纵向、横向以及垂向位移
?、φ、ψ纵向、横向以及垂向角位移
g、w、b、c轮箍、轮芯、构架以及车体的下标
Mg、Mw、Mb、Mc轮箍、轮对、构架以及车体的质量
Ig、Iw、Ib、Ic轮箍、轮对、构架以及车体的转动惯量
Kg、Kp、Ks轮箍、一系以及二系悬挂刚度
Cg、Cp、Cs弹性车轮、一系以及二系悬挂阻尼
dw一系悬挂横向距离的二分之一
d0弹性车轮橡胶悬挂横向距离的二分之一
a0左右轮轨接触点距离的二分之一
r0、rL、rR车轮名义滚动、左/右轮半径的二分之一
rw轮芯半径

Fig.3

End view of metro vehicles"

Fig.4

Top view of metro vehicles"

Fig.5

Side view of metro vehicles"

Table 3

Dynamic parameters of type a metro train"

参 数数值
定距/m15.7
轴距/m2.5
滚动圆直径/m0.42
轮对质量、轴箱质量/t1.86
构架质量/t4.28
车体质量/t41.61
轮对惯量/(t·m21.036
构架惯量/(t·m22.486
车体惯量/(t·m21708.23
一系刚度/(MN·m-11.07
二系刚度/(MN·m-10.155
橡胶层径向和轴向刚度/(MN·m-130
橡胶层径向与轴向阻尼/(kN·s·m-1300

Table 4

Modal of car body"

阶数弹性车轮刚性车轮
频率振型频率振型
10.39侧滚0.20侧滚
20.59纵向0.64纵向
30.73摇头0.67横移
40.97沉浮0.8摇头
50.99横移0.92沉浮
61.20点头1.24点头

Table 5

Modal of frame"

阶数弹性车轮刚性车轮
频率振型频率振型
16.32沉浮2.68侧滚
28.32侧滚4.40沉浮
312.07点头8.20点头
413.24纵向9.05摇头
519.20摇头10.86横移
623.48横移22.59纵向

Table 6

Modal of wheel"

阶数弹性车轮刚性车轮
轮箍轮芯
频率振型频率振型频率振型
161.25侧滚61.76侧滚37.39侧滚
287.79沉浮87.82沉浮135.43横移
3104.07横移116.76横移159.38沉浮
4139.97纵向136.14纵向161.26纵向
5989.15摇头989.20摇头525.90摇头
63145.40点头3145.40点头1594.20点头

Fig.6

Layout of Dongshuimen Yangtze river bridge"

Fig.7

Mechanical model of dongshuimen Yangtze river bridge"

Table 7

Comparison of test results and theoretical calculation results of the natural vibration characteristics of bridge"

序号实测频率/Hz计算频率/Hz实测振型计算振型描述
10.3500.317主梁正对称横弯
20.4120.451主梁反对称竖弯
30.6510.665主梁正对称竖弯
40.8240.743主梁反对称横弯

Fig.8

Samples of American fifth grade track irregularity"

Fig.9

Sato spectrum irregularity samples"

Fig.10

Wheel/rail vertical force"

Fig.11

Wheel/rail lateral force"

Fig.12

Wheel vertical acceleration"

Fig.13

Lateral acceleration of wheels"

Fig.14

Vertical acceleration of axle box"

Fig.15

Lateral acceleration of axle box"

Fig.16

Wheel/rail force"

Fig.17

Wheel vertical acceleration"

Fig.18

Wheel load reduction rate and derailment coefficient"

Fig.19

Vertical vibration of bridge"

Fig.20

Bridge lateral vibration"

Fig.21

Single-degree of freedom system under simple harmonic excitation"

Fig.22

Relationship between power amplification factor β and frequency f"

Fig.23

Bridge vibration at different speeds"

1 Bouvet P, V'meent N, Coblentz A, et al. Optimization of resilient wheels for rolling noise control[J]. Journal of Sound and Vibration, 1996, 1993(1): 253-260.
2 Makoto I I. 弹性车轮对轨道动态性能的作用[J]. 国外铁道车辆, 1998(6): 34-40.
Makoto I I. The effect of elastic wheels on track dynamic performance[J]. Foreign Railway Vehicles, 1998(6): 34-40.
3 Remington P J. Wheel/rail rolling noise, I: theoretical analysis[J]. Acoust Soc Am, 1987, 81(6): 1805-1823.
4 黄彪, 戚援, 杜利清. 弹性车轮非线性有限元分析及疲劳强度校核[J]. 轨道交通装备与技术, 2014(2): 44-47.
Huang Biao, Qi Yuan, Du Li-qing. Nonlinear finite element analysis and fatigue strength check of elastic wheels[J]. Rail Transportation Equipment and Technology, 2014(2): 44-47.
5 戚援, 侯传伦, 杜利清, 等. 低地板车辆用块式橡胶弹性车轮的研制[C]∥第十七届中国科协年会, 广州, 2015: No.6.
6 Cigada A, Manzoni S, Vanali M. Geometry effects on the vibro-acoustic behavior of railway resilient wheels[J]. Vibration Control, 2011, 17(12): No.1761.
7 Lopez I, Vera E, Busturia J M, et al. Theoretical and experimental analysis of ring damped railway wheels[C]∥In Proceedings of the ISMA21 Conference, Leuven, Belgium, 1996: 787-794.
8 张乐. 弹性车轮结构刚度和强度研究[D]. 成都:西南交通大学机械工程学院, 2014.
Zhang Le. Research on stiffness and strength of elastic wheel structure[D]. Chengdu: College of Mechanical Engineering, Southwest Jiaotong University, 2014.
9 邢璐璐, 李芾, 付政波. 弹性车轮车辆临界速度及曲线通过性能分析[J]. 电力机车与城轨车辆, 2012, 35(1): 25-28.
Xing Lu-lu, Li Fu, Fu Zheng-bo. Analysis of the critical speed and curve passing performance of flexible wheel vehicles[J]. Electric Locomotives and Urban Rail Vehicles, 2012, 35(1): 25-28.
10 孙明昌, 曾京, 徐志胜. 弹性轮对车辆-轨道垂向耦合系统动力学研究[J]. 铁道车辆, 2003(1):15-20.
Sun Ming-chang, Zeng Jing, Xu Zhi-sheng. Dynamics study of elastic wheelset vehicle-track vertical coupling system[J]. Railway Vehicle, 2003(1):15-20.
11 文娟. 弹性车轮动力学性能及纵向振动研究[D].西南交通大学机械工程学院, 2016.
Wen Juan. Research on dynamic performance and longitudinal vibration of elastic wheel[D]. Chengdu: College of Mechanical Engineering, Southwest Jiaotong University, 2016.
12 杨阳, 丁军君, 李芾, 等. 弹性车轮等效刚度对车辆动力学性能的影响[J]. 中国铁道科学, 2018, 39(3): 63-70.
Yang Yang, Ding Jun-jun, Li Fu, et al. The effect of the equivalent stiffness of elastic wheels on vehicle dynamics[J]. China Railway Science, 2018, 39(3): 63-70.
13 郭文浩, 池茂儒, 杨飞, 等. 弹性轮对对轮轨动作用力的影响[J]. 机械, 2011, 38(9):1-7.
Guo Wen-hao, Chi Mao-ru, Yang Fei, et al. The effect of elastic wheel pair on wheel-rail action force[J]. Machinery, 2011, 38(9):1-7.
14 刘玉霞, 韩健, 周信, 等. 弹性车轮减振降噪特性分析[J]. 铁道学报, 2015, 37(6): 48-53.
Liu Yu-xia, Han Jian, Zhou Xin, et al. Analysis of vibration and noise reduction characteristics of elastic wheels[J]. Journal of the China Railway Society, 2015, 37(6):48-53.
15 周信. 地铁弹性车轮的减振降噪及动态特性研究[D]. 成都: 西南交通大学机械工程学院, 2019.
Zhou Xin. Research on vibration and noise reduction and dynamic characteristics of subway elastic wheels[D]. Chengdu: College of Mechanical Engineering, Southwest Jiaotong University, 2019.
16 Han J, He Y, Xiao X, et al. Effect of control measures on wheel/rail noise when the vehicle curves[J]. Applied Sciences, 2017, 7(11): No.1144.
17 张小强, 黄振兴, 侯传伦. 弹性车轮在地铁车辆上的应用及分析[J]. 机车车辆工艺, 2020(3): 11-15.
Zhang Xiao-qiang, Huang Zhen-xing, Hou Chuan-lun. Application and analysis of elastic wheels on metro vehicles[J]. Locomotive and Rolling Stock Technology, 2020(3): 11-15.
18 Claus H, Schiehlen W. Dynamic stability and random vibrations of rigid and elastic wheelsets[J]. Nonlinear Dynamics, 2004, 36(2-4): 299-311.
19 Arai H. On the acoustic and dynamic characteristics of resilient wheel:1st report, comparison with various types of wheels[J]. Transactions of the Japan Society of Mechanical Engineers C, 1983, 49: 543-552.
20 李小珍, 强士中, 沈锐利. 高速列车-大跨度钢斜拉桥空间耦合振动响应研究[J]. 桥梁建设, 1998(4):67-70.
Li Xiao-zhen, Qiang Shi-zhong, Shen Rui-li. Research on spatial coupling vibration response of high-speed train and long-span steel cable-stayed bridge[J]. Bridge Construction, 1998(4): 67-70.
21 Zhai W M. Two simple fast integration methods for large-scale dynamic problems in engineering[J]. International Yournal for Numerical Methods in Engineering, 1996, 39(24): 4199-4214.
22 陈兆玮. 高速铁路桥墩沉降对行车性能影响的研究[D]. 成都:西南交通大学机械工程学院, 2017.
Chen Zhao-wei. Influence of pier settlement on dynamic performance of running trains in high-speed railway[D]. Chengdu: College of Mechanical Engineering, Southwest Jiaotong University, 2017.
23 向波, 周逸, 陈县伟. 东水门长江大桥动力特性监测系统研究[J]. 西部交通科技, 2015(11): 46-50.
Xiang Bo, Zhou Yi, Chen Xian-wei. Research on the dynamic characteristics monitoring system of dongshuimen yangtze river bridge[J]. Western Transportation Science and Technology, 2015(11): 46-50.
24 袁万城, 崔飞, 张启伟. 桥梁健康监测与状态评估的研究现状与发展[J]. 同济大学学报:自然科学版, 1999(2): 59-63.
Yuan Wan-cheng, Cui Fei, Zhang Qi-wei. Research status and development of bridge health monitoring and condition assessment[J]. Journal of Tongji University (Natural Science Edition), 1999(2): 59-63.
25 杨学志, 严普强, 张锻, 等. DP传感器研究及桥梁自振特性测试[J]. 振动.测试与诊断, 1997(2):53-58.
Yang Xue-zhi, Yan Pu-qiang, Zhang Duan, et al. DP sensor research and bridge natural vibration characteristics test[J]. Journal of Vibration,Measurement & Diagnosis, 1997(2): 53-58.
26 严普强, 乔陶鹏. 工程中的低频振动测量与其传感器[J]. 振动.测试与诊断, 2002(4): 39-75.
Yan Pu-qiang, Qiao Tao-peng. Low-frequency vibration measurement and its sensors in engineering[J]. Vibration, Testing and Diagnsis, 2002(4): 39-75.
27 翟婉明. 车辆-轨道耦合动力学[M]. 北京: 科学出版社, 2015.
28 Sato Y. Study on high-frequency vibration in track operation with high-speed trains[J]. Quarterly Report of RTRI, 1997, 18(3): 109-114.
29 杨阳, 李芾, 戚壮, 等. 弹性车轮动力学复合模型及其性能研究[J]. 中国铁道科学, 2015, 36(4): 93-100.
Yang Yang, Li Fu, Qi Zhuang, et al. Composite model of elastic wheel dynamics and its performance research[J]. China Railway Science, 2015, 36(4): 93-100.
30 Claus H, Len W S. Dynamic stability and random vibrations of rigid and elastic wheelsets[J]. Nonlinear Dynamics, 2004, (36): 299-311.
[1] Shu-pei ZHANG,Ming-yue XIA,Wei ZHANG,Zhao CHEN,Yi-xiang CHEN. Impact dynamic modeling and simulation for ball joint with clearance considering nonlinear stiffness [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2227-2235.
[2] Hui CHEN,Ya-jun SHAO. Measurement method of pavement surface spectrum with multi⁃sensor coupling based on inertial benchmark [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2254-2262.
[3] Ping-yi LIU,Xiao-ting LI,Ruo-lin GAO,Hai-tao LI,Wen-jun WEI,Ya WANG. Design and experiment of tilt-driving mechanism for the vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2185-2192.
[4] Xue-jin HUANG,Jin-xing ZHONG,Jing-yu LU,Ji ZHAO,Wei XIAO,Xin-mei YUAN. Electric vehicle charging load forecasting method based on user portrait [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2193-2200.
[5] Zheng-wei GU,Pan ZHANG,Dong-ye LYU,Chun-li WU,Zhong YANG,Guo-jin TAN,Xiao-ming HUANG. Earthquake⁃induced residual displacement analysis of simply supported beam bridge based on numerical simulation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1711-1718.
[6] Xin CHEN,Guan-chen ZHANG,Kang-ming ZHAO,Jia-ning WANG,Li-fei YANG,De-rong SITU. Influence of lap welds on the lightweight design of welded aluminum structures [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1282-1288.
[7] Yong ZHANG,Feng-zhao MAO,Shui-chang LIU,Qing-yu WANG,Shen-gong PAN,Guang-sheng ZENG. Optimization on distortion grid of vehicle external flow field based on Laplacian Algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1289-1296.
[8] Shao-hua WANG,Kun CHU,De-hua SHI,Chun-fang YIN,Chun LI. Robust compound coordinated control of HEV based on finite⁃time extended state observation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1272-1281.
[9] Lei CHEN,Yang WANG,Zhi-sheng DONG,Ya-qi SONG. A vehicle agility control strategy based on steering intent [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1257-1263.
[10] Yan-li YIN,Xue-jiang HUANG,Xiao-liang PAN,Li-tuan WANG,Sen ZHAN,Xin-xin ZHANG. Hierarchical control of hybrid electric vehicle platooning based on PID and Q⁃Learning algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1481-1489.
[11] Gui-shen YU,Xin CHEN,Zi-tao WU,Yi-xiong CHEN,Guan-chen ZHANG. Analysis of microstructure and mechanical properties of probeless friction stir spot welding joint in AA6061⁃T6 aluminum thin plate [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1338-1344.
[12] Yan-tao TIAN,Xing HUANG,Hui-qiu LU,Kai-ge WANG,Fu-qiang XU. Multi⁃mode behavior trajectory prediction of surrounding vehicle based on attention and depth interaction [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1474-1480.
[13] Hong-bo YANG,Wen-ku SHI,Zhi-yong CHEN,Nian-cheng GUO,Yan-yan ZHAO. Multi⁃objective optimization of macro parameters of helical gear based on NSGA⁃Ⅱ [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1007-1018.
[14] Rui ZHAO,Yun LI,Hong-yu HU,Zhen-hai GAO. Vehicle collision warning method at intersection based on V2I communication [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1019-1029.
[15] Xiao-bo CHEN,Ling CHEN. Variational Bayesian cooperative target tracking with unknown localization noise statistics [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1030-1039.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[3] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[4] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[5] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[6] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[7] Yang Qing-fang, Chen Lin . Division approach of traffic control work zone[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 139 -142 .
[8] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[9] Zhang He-sheng, Zhang Yi, Wen Hui-min, Hu Dong-cheng . Estimation approaches of average link travel time using GPS data[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .
[10] Qu Zhao-wei,Chen Hong-yan,Li Zhi-hui,Hu Hong-yu,Wei Wei . 2D view reconstruction method based on single calibration pattern
[J]. 吉林大学学报(工学版), 2007, 37(05): 1159 -1163 .