Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (9): 2601-2610.doi: 10.13229/j.cnki.jdxbgxb.20211169

Previous Articles     Next Articles

Dynamic graph convolutional neural network for image sentiment distribution prediction

Yu-ting SU1,2(),Ji WANG2,Wei ZHAO1,Pei-guang JING1,2()   

  1. 1.School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China
    2.Tianjin International Engineering Institute,Tianjin University,Tianjin 300072,China
  • Received:2021-11-08 Online:2023-09-01 Published:2023-10-09
  • Contact: Pei-guang JING E-mail:ytsu@tju.edu.cn;pgjing@tju.edu.cn

Abstract:

Aiming at the problem that there exists semantic gap between visual features and high-level emotional semantics and the subjectivity and ambiguity of emotional labels in image sentiment distribution learning, this paper proposes an Emotional Semantic Dynamic Graph Convolution Network (ESDGCN). In this framework, the Emotion Activation Module (EAM) is constructed to automatically locate the emotional semantic regions to effectively mine the content representation that fits the emotional semantics. In addition, the Semantic Dynamic Graph Convolution Network (SDGCN) is to adaptively capture the semantic relevance between labels. Finally, we adopt the parallel structure to jointly consider local semantic emotional information and label correlations. Experimental results on three open emotional datasets demonstrate the effectiveness of the proposed method.

Key words: information processing technology, visual sentiment computing, dynamic graph convolution, label distribution learning

CLC Number: 

  • TP391

Fig.1

Emotional dynamic graph convolution network for image sentiment distribution prediction"

Fig.2

Loss curve and convergence curve of evaluation indexes for Flickr-LDL dataset"

Table 1

Comparison of different combination of module"

方法KLCosInterChebSqCSoren
B0.4670.8040.6020.3550.5810.392
B+E0.5530.8160.6400.2930.3750.367
B+D0.4820.8200.6590.2760.4040.366
B+D+S0.4280.8430.6690.2510.3470.331
B+E+D+S0.3690.8470.7050.2490.3380.327

Table 2

Comparison of different branch ratios"

RatiosKLCosInterChebSqCSoren
0.00.4270.8280.6660.270.3470.353
0.10.4880.8110.6500.2780.3900.368
0.30.5750.7950.6250.2920.3980.381
0.50.3690.8470.7050.2490.3380.327
0.70.5700.7840.6260.3020.4480.396
0.90.4500.8340.6640.2620.3320.342
1.00.5530.8160.6400.2930.3750.367

Table 3

Comparison of different number of GCN layers"

层数KLCosInterChebSqCSoren
10.5200.8190.6510.2730.3430.349
20.3690.8470.7050.2490.3380.327
30.4610.8230.6710.2740.3400.345

Table 4

Comparison of different GCN structure"

图结构KLCosInterChebSqCSoren
T+T0.5490.8010.6260.2900.3660.374
D+D0.4360.8180.6660.2840.3350.355
S+S0.5040.8010.6600.2850.4020.368

Fig.3

Prediction results of different graph convolution structures"

Table 5

Comparison of different dimension of GCN layers"

特征维度KLCosInterChebSqCSoren
2560.4740.8400.6740.2550.3110.326
5120.5060.8180.6490.2740.3590.357
10240.3690.8470.7050.2490.3380.327
20480.5110.8270.6590.2650.3370.341
40960.5110.8190.6510.2730.3390.350

Table 6

Comparison of ESDGCN with others for Flickr-LDL"

算法KLCosInterChebSqCSoren
AA-KNN140.7370.7770.5990.3080.4470.401
CPNN161.0010.6950.5380.3530.5550.462
EDL-LRL240.8640.7910.5960.3030.4630.402
LDLLC410.7850.7680.5700.3290.5030.430
LDL-SCL230.7310.7690.5290.3570.5550.471
AlexNet0.4800.8340.6560.2620.3350.343
VGGNet0.4790.8440.6680.2550.3170.329
ResNet1010.4670.8040.6020.3550.5810.392
ACPNN*171.1790.6500.5060.3780.6140.494
JCDL*340.5280.8370.6760.2660.2920.348
SSDL*420.4500.8490.6460.2670.3560.349
ESDGCN0.3690.8470.7050.2490.3380.327

Table 7

Comparison of ESDGCN with other for Twitter-LDL"

方法KLCosInterChebSqCSoren
AA-KNN142.6280.7630.5700.3450.5420.430
CPNN161.1790.7350.5520.3580.5470.448
EDL-LRL242.8370.5250.3760.5040.8550.623
LDLLC411.5410.5230.3670.5120.8750.633
LDL-SCL231.0340.5150.4300.5771.4470.664
AlexNet0.4890.8550.6790.2510.3160.320
VGGNet0.5010.8690.6760.2490.3060.334
ResNet1010.5220.8300.6490.2740.3400.351
ACPNN*171.5020.6420.4810.4130.6780.519
JCDL*340.5430.8550.6980.2540.2830.345
SSDL*420.5140.8590.6850.2530.2910.339
ESDGCN0.4080.8620.6930.2470.3340.328

Table 8

Comparison of ESDGCN with others for Emotion6"

方法KLCosInterChebSqCSoren
AA-KNN140.7080.6020.5380.3530.3560.462
CPNN160.5640.6850.5690.3310.2950.431
EDL-LRL243.6990.7800.6530.2790.4040.327
LDLLC410.4240.7960.6640.2470.2100.336
LDL-SCL230.4050.7880.6370.2680.2190.363
AlexNet0.5060.7430.6190.2760.2460.384
VGGNet0.3840.8250.6760.2340.2380.316
ResNet1010.4720.7500.6190.2790.3250.383
ACPNN*171.9500.4750.4030.4760.7010.597
JCDL*340.4380.8050.6680.2510.2600.325
SSDL*420.4000.8030.6580.2370.2420.369
ESDGCN0.2860.8350.7250.2280.2600.307
1 Zhou L, Fan X, Ma Y, et al. Uncertainty-aware cross-dataset facial expression recognition via regularized conditional alignment[C]∥Proceedings of ACM International Conference on Multimedia, New York, USA, 2020: 2964-2972.
2 Farzaneh A H, Qi X. Discriminant distribution-agnostic loss for facial expression recognition in the wild[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Piscataway, USA, 2020: 406-407.
3 卢洋, 王世刚, 赵文婷, 等. 基于离散Shearlet类别可分性测度的人脸表情识别方法[J].吉林大学学报: 工学版, 2019, 49(5): 1715-1725.
Lu Yang, Wang Shi-gang, Zhao Wen-ting, et al. Facial expression recognition based on separability assessment of discrete Shearlet transform[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(5): 1715-1725.
4 方明, 陈文强. 结合残差网络及目标掩膜的人脸微表情识别[J].吉林大学学报: 工学版, 2021, 51(1): 303-313.
Fang Ming, Chen Wen-qiang. Face micro-expression recognition based on ResNet with object mask[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(1): 303-313.
5 Huang F, Wei K, Weng J, et al. Attention-based modality-gated networks for image-text sentiment analysis[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2020, 16(3): 1-19.
6 Ji R, Chen F, Cao L, et al. Cross-modality microblog sentiment prediction via bi-layer multimodal hypergraph learning[J]. IEEE Transactions on Multimedia, 2018, 21(4): 1062-1075.
7 Jian M, Dong J, Gong M, et al. Learning the traditional art of Chinese calligraphy via three-dimensional reconstruction and assessment[J]. IEEE Transactions on Multimedia, 2019, 22(4): 970-979.
8 Yang J, She D, Lai Y K, et al. Retrieving and classifying affective images via deep metric learning[C]∥Proceedings of the AAAI Conference on Artificial Intelligence, Palo Alto, USA, 2018: 491-498.
9 Yao X, She D, Zhao S, et al. Attention-aware polarity sensitive embedding for affective image retrieval[C]∥Proceedings of the IEEE International Conference on Computer Vision. Piscataway, USA, 2019: 1140-1150.
10 Li Z, Liu J, Zhu X, et al. Image annotation using multi-correlation probabilistic matrix factorization[C]∥Proceedings of the ACM International Conference on Multimedia, New York, USA, 2010: 1187-1190.
11 Li Z, Tang J, He X. Robust structured nonnegative matrix factorization for image representation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 29(5): 1947-1960.
12 Yang X, Song X, Feng F, et al. Attribute-wise explainable fashion compatibility modeling[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2021, 17(1): 1-21.
13 Yang X, Song X, Han X, et al. Generative attribute manipulation scheme for flexible fashion search[C]∥Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, New York, USA, 2020: 941-950.
14 Geng X. Label distribution learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(7): 1734-1748.
15 Peng K C, Chen T, Sadovnik A, et al. A mixed bag of emotions: model, predict, and transfer emotion distributions[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Piscataway, USA, 2015: 860-868.
16 Geng X, Yin C, Zhou Z H. Facial age estimation by learning from label distributions[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(10): 2401-2412.
17 Yang J, Sun M, Sun X. Label distribution learning via augmented conditional probability neural network[C]∥Proceedings of the AAAI Conference on Artificial Intelligence, Palo Alto, USA, 2017: 224-230.
18 Zhou Y, Xue H, Geng X. Emotion distribution recognition from facial expressions[C]∥Proceedings of the ACM International Conference on Multimedia, New York, USA, 2015: 1247-1250.
19 Ren T, Jia X, Li W, et al. Label distribution learning with label-specific features[C]∥Proceedings of the International Joint Conference on Artificial Intelligence, San Mateo, USA, 2019: 3318-3324.
20 Zhao S, Yao H, Gao Y, et al. Continuous probability distribution prediction of image emotions via multitask shared sparse regression[J]. IEEE Transactions on Multimedia, 2016, 19(3): 632-645.
21 Plutchik R. Emotions: a general psychoevolutionary theory[J]. Approaches to Emotion, 1984(1984): 197-219.
22 Xu M, Zhou Z H. Incomplete label distribution learning[C]∥Proceedings of the International Joint Conference on artificial intelligence, San Mateo, USA, 2017: 3175-3181.
23 Jia X, Li Z, Zheng X, et al. Label distribution learning with label correlations on local samples[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 33(4): 1619-1631.
24 Jia X, Zheng X, Li W, et al. Facial emotion distribution learning by exploiting low-rank label correlations locally[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Piscataway, USA, 2019: 9841-9850.
25 Chen T, Yu F X, Chen J, et al. Object-based visual sentiment concept analysis and application[C]∥Proceedings of the ACM International Conference on Multimedia, New York, USA, 2014: 367-376.
26 Su Y T, Zhao W, Jing P G, et al. Exploiting low-rank latent gaussian graphical model estimation for visual sentiment distribution[J]. IEEE Transactions on Multimedia, 2022,25: 1243-1255.
27 缪裕青, 雷庆庆, 张万桢, 等. 多视觉目标融合的图像情感分析研究[J]. 计算机应用研究, 2021, 38(4): 1250-1255.
Miao Yu-qing, Lei Qing-qing, Zhang Wan-zhen, et al. Research on image sentiment analysis based on multi-visual object fusion[J] Application Research of Computers, 2021, 38(4): 1250-1255.
28 盛家川, 陈雅琦, 王君, 等. 深度学习结构优化的图像情感分类[J]. 红外与激光工程, 2020, 49(11): 264-273.
Sheng Jia-chuan, Chen Ya-qi, Wang Jun, et al. Image sentiment classification via deep learning structure optimization[J] Infrared and Laser Engineering, 2020, 49(11): 264-273.
29 Chen T, Borth D, Darrell T, et al. Deepsentibank: visual sentiment concept classification with deep convolutional neural networks[J/OL]. [2021-10-25].
30 Zhu X, Li L, Zhang W, et al. Dependency exploitation: a unified CNN-RNN approach for visual emotion recognition[C]∥Proceedings of the International Joint Conference on Artificial Intelligence, San Mateo, USA, 2017: 3595-3601.
31 Campos V, Salvador A, Giró-i-Nieto X, et al. Diving deep into sentiment: understanding fine-tuned CNNs for visual sentiment prediction[C]∥Proceedings of the 1st International Workshop on Affect & Sentiment in Multimedia, New York, USA, 2015: 57-62.
32 Campos V, Jou B, Giro-i-Nieto X. From pixels to sentiment: fine-tuning CNNs for visual sentiment prediction[J]. Image and Vision Computing, 2017, 65(1): 15-22.
33 You Q, Luo J, Jin H, et al. Robust image sentiment analysis using progressively trained and domain transferred deep networks[C]∥Proceedings of the AAAI Conference on Artificial Intelligence, Palo Alto, USA, 2015: 381-388.
34 Yang J, She D, Sun M. Joint image emotion classification and distribution learning via deep convolutional neural network[C]∥Proceedings of the International Joint Conference on Artificial Intelligence, San Mateo, USA, 2017: 3266-3272.
35 徐冰冰, 岑科廷, 黄俊杰, 等. 图卷积神经网络综述[J].计算机学报, 2020, 43(5): 755-780.
Xu Bing-bing, Cen Ke-yan, Huang Jun-jie, et al. A survey on graph convolutional neural network[J] Chinese Journal of Computers, 2020, 43(5): 755-780.
36 Chen T, Xu M, Hui X, et al. Learning semantic-specific graph representation for multi-label image recognition[C]∥Proceedings of the IEEE/CVF International Conference on Computer Vision, Piscataway, USA, 2019: 522-531.
37 He T, Jin X. Image emotion distribution learning with graph convolutional networks[C]∥Proceedings of the International Conference on Multimedia Retrieval, New York, USA, 2019: 382-390.
38 Zhou B, Khosla A, Lapedriza A, et al. Learning deep features for discriminative localization[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Los Alamitos, USA, 2016: 2921-2929.
39 Yang J, Sun M, Sun X. Label distribution learning via augmented conditional probability neural network[C]∥Proceedings of the AAAI Conference on Artificial Intelligence, Palo Alto, USA, 2017: 224-230.
40 Peng K C, Chen T, Sadovnik A, et al. A mixed bag of emotions: model, predict, and transfer emotion distributions[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Piscataway, USA, 2015: 860-868.
41 Jia X, Li W, Liu J, et al. Label distribution learning by exploiting label correlations[C]∥Proceedings of the AAAI Conference on Artificial Intelligence, Palo Alto, USA, 2018: 3310-3317.
42 Xiong H, Liu H, Zhong B, et al. Structured and sparse annotations for image emotion distribution learning[C]∥Proceedings of the AAAI Conference on Artificial Intelligence, Palo Alto, USA, 2019: 363-370.
[1] Mian-shu CHEN,Lu-lu YU,Xiao-ni LI,Hong-yu ZHENG. Loop detection based on uniform ORB [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2666-2675.
[2] Qiang GUO,Guo-hui ZHU,Wan-chen LI. TDOA/FDOA localization based on chaotic sparrow search algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 593-600.
[3] Hou⁃jie LI,Fa⁃sheng WANG,Jian⁃jun HE,Yu ZHOU,Wei LI,Yu⁃xuan DOU. Pseudo sample regularization Faster R⁃CNN for traffic sign detection [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1251-1260.
[4] Hua-wei JIANG,Zhen YANG,Xin ZHANG,Qian-lin DONG. Research progress of image dehazing algorithms [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1169-1181.
[5] De-xing WANG,Ruo-you WU,Hong-chun YUAN,Peng GONG,Yue WANG. Underwater image restoration based on multi-scale attention fusion and convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1396-1404.
[6] Jing JIN,Jian-wu DANG,Yang-ping WANG,Dong SHEN. Multi⁃cue particle filter tracking based on fuzzy statistical texture features [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1111-1120.
[7] Guo-hua LIU,Wen-bin ZHOU. Pulse wave signal classification algorithm based on time⁃frequency domain feature aliasing using convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1818-1825.
[8] Ke-yan WANG,Di WANG,Xi ZHAO,Jing-yi CHEN,Yun-song LI. Image dehazing based on joint estimation via convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1771-1777.
[9] Zai-feng SHI,Jin-zhuo LI,Qing-jie CAO,Hui-long LI,Qi-xing HU. Low⁃dose spectral computer⁃tomography imaging denoising method via a generative adversarial network [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1755-1764.
[10] Hua CHEN,Wei GUO,Jing-wen YAN,Wen-hao ZHUO,Liang-bin WU. A new deep learning method for roads recognition from SAR images [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1778-1787.
[11] Wei ZHANG,Yong HAN,Ming JIN,Xiao-lin QIAO. Toeplitz matrices reconstruction based DOA estimation for coherent signals [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 703-710.
[12] Yan-fen CHENG,Li-juan YAO,Qiao YUAN,Xian-qiao CHEN. Clearing strategy of underwater video image [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 668-677.
[13] Xiao-hui YU,Zhi-cheng ZHANG,Xin-bo LI,Xiao-dong SUN. Parameter estimation of exponentially damped sinusoidsbased on state⁃space model [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2083-2088.
[14] Fu LIU, Mei-jing QUAN, Ke WANG, Yun LIU, Bing KANG, Zhi-wu HAN, Tao HOU. Indoor positioning method based on location fingerprinting of imitating mechanism of scorpion vibration source [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2076-2082.
[15] Zi-ji MA,Hao LU,Yan-ru DONG. Dual path convolutional neural network forsingle image super⁃resolution [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2089-2097.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[3] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[4] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[5] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[6] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[7] Yang Qing-fang, Chen Lin . Division approach of traffic control work zone[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 139 -142 .
[8] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[9] Zhang He-sheng, Zhang Yi, Wen Hui-min, Hu Dong-cheng . Estimation approaches of average link travel time using GPS data[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .
[10] Qu Zhao-wei,Chen Hong-yan,Li Zhi-hui,Hu Hong-yu,Wei Wei . 2D view reconstruction method based on single calibration pattern
[J]. 吉林大学学报(工学版), 2007, 37(05): 1159 -1163 .