Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (9): 2591-2600.doi: 10.13229/j.cnki.jdxbgxb.20220044
Previous Articles Next Articles
Guang HUO1(),Da-wei LIN1,Yuan-ning LIU2,3(),Xiao-dong ZHU2,3,Meng YUAN2,Di GAI4
CLC Number:
1 | Arsalan M, Naqvi R A, Kim D S, et al. IrisDenseNet: robust iris segmentation using densely connected fully convolutional networks in the images by visible light and near-infrared light camera sensors[J]. Sensors, 2018, 18(5): No.1501. |
2 | Huo Guang, Lin Da-wei, Yuan Meng, et al. Heterogeneous iris segmentation method based on modified U-Net[J]. Journal of Electronic Imaging, 2021, 30(6): No.063015. |
3 | Umer S, Dhara B C. A fast iris localization using inversion transform and restricted circular hough transform[C]∥Proceedings of the 2015 8th International Conference on Advances in Pattern Recognition, Kolkata, India, 2015: 1-6. |
4 | Bendale A, Nigam A, Prakash S, et al. Iris segmentation using improved hough transform[C]∥Proceedings of the 8th International Conference on Intelligent Computing, Huangshan, China, 2012: 408-415. |
5 | Roy D A, Soni U S. IRIS segmentation using Daughman's method[C]∥Proceedings of the 2016 International Conference on Electrical, Electronics, and Optimization Techniques, Chennai, India, 2016: 2668-2676. |
6 | 周锐烨, 沈文忠. PI-Unet: 异质虹膜精确分割神经网络模型的研究[J]. 计算机工程与应用, 2021, 57(15): 223-229. |
Zhou Rui-ye, Shen Wen-zhong. PI-Unet: research on precise iris segmentation neural network model for heterogeneous iris[J]. Computer Engineering and Applications, 2021, 57(15): 223-229. | |
7 | Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651. |
8 | Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation[C]∥Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234-241. |
9 | Chaurasia A, Culurciello E. LinkNet: exploiting encoder representations for efficient semantic segmentation[C]∥Proceedings of the 2017 IEEE Visual Communications and Image Processing, Petersburg, USA, 2017: 1-4 |
10 | Chen Ying, Wang Wen-yuan, Zeng Zhuang, et al. An adaptive CNNs technology for robust iris segmentation[J]. IEEE Access, 2019, 7: 64517-64532. |
11 | Wang Cai-yong, Wang Yun-long, Xu Bo-qiang, et al. A lightweight multi-label segmentation network for mobile iris biometrics[C]∥Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, Spain, 2020: 1006-1010. |
12 | Zhong Z L, Lin Z, Bidart R, et al. Squeeze-and-attention networks for semantic segmentation[C]∥Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 13062-13071. |
13 | Biometrics ideal test. CASIA.v4 Database[DB/OL]. [2022-01-06]. |
14 | Kumar A, Passi A. Comparison and combination of iris matchers for reliable personal authentication[J]. Pattern Recognition, 2010, 43(3): 1016-1026. |
15 | Proena H, Filipe S, Santos R, et al. The UBIRIS.v2: a database of visible wavelength iris images captured on-the-move and at-a-distance[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(8): 1529-1535. |
16 | Milletari F, Navab N, Ahmadi S A. V-Net: fully convolutional neural networks for volumetric medical image segmentation[C]∥Proceedings of the 2016 4th International Conference on 3D Vision, Stanford, USA, 2016: 565-571. |
17 | Rathgeb C. Iris Biometrics from Segmentation to Template Security[M]. Iris Biometrics: From Segmentation to Template Security, 2012. |
18 | Wild P, Hofbauer H, Ferryman J, et al. Segmentation-level fusion for iris recognition[C]∥Proceedings of the 2015 International Conference of the Biometrics Special Interest Group, Darmstadt, Germany, 2015: 1-6. |
19 | Uhl A, Wild P. Weighted adaptive hough and ellipsopolar transforms for real-time iris segmentation[C]∥Proceedings of the 2012 5th IAPR International Conference on Biometrics, New Delhi, India, 2012: 283-290. |
20 | A biometric reference system for iris, ersion osiris V 4.1[EB/OL]. [2022-01-06]. |
21 | Uhl A, Wild P. Multi-stage visible wavelength and near infrared iris segmentation framework[C]∥Proceedings of the International Conference Image Analysis and Recognition, Aveiro, Portugal, 2012: 1-10. |
22 | Ahmad S, Fuller B. Unconstrained iris segmentation using convolutional neural networks[C]∥Proceedings of the Asian Conference on Computer Vision, Perth, Australia, 2018: 450-466. |
23 | Alonsofern J O. Iris boundaries segmentation using the generalized structure tensor—a study on the effects of image degradation[C]∥Proceedings of the 2012 5th IEEE International Conference on Biometrics: Theory, Applications and Systems, Arlington, USA, 2012: 426-431. |
24 | Ehsaneddin J, Andreas U. Iris segmentation using fully convolutional encoder-decoder Networks[C]∥Proceedings of the Computer Vision and Pattern Recognition, New York, USA, 2017: 133-155. |
25 | 尤轩昂, 赵鹏, 慕晓冬, 等. 融合注意力机制与密集多尺度特征的异质噪声虹膜分割方法[J]. 激光与光电子学进展,2022, 59(4): 109-120 |
You Xuan-ang, Zhao Peng, Mu Xiao-dong, et al. Heterogeneous noise iris segmentation based on attention mechanism and dense multi-scale features[J]. Laser & Optoelectronics Progress, 2022, 59(4): 109-120. | |
26 | Lozej J, Meden B, Struc V, et al. End-to-end iris segmentation using U-Net[C]∥Proceedings of the 2018 IEEE International Work Conference on Bioinspired Intelligence,San Carlos, Costa Rica, 2018: 1-6. |
27 | Zhang Wei, Lu Xiao-qi, Gu Yu, et al. A robust iris segmentation scheme based on improved U-Net[J]. IEEE Access, 2019, 7: 85082-85089. |
28 | Wang Qi, Meng Xiang-yue, Sun Ting, et al. A light iris segmentation network[J]. The Visual Computer, 2021, 38: 2591-2601. |
29 | He Kai-ming, Zhang Xiang-yu, Ren Shao-qiang, et al. Deep residual learning for image recognition[C]∥Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770-778. |
[1] | Ying HE,Zhuo-ran WANG,Xu ZHOU,Yan-heng LIU. Point of interest recommendation algorithm integrating social geographical information based on weighted matrix factorization [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2632-2639. |
[2] | Yun-zuo ZHANG,Xu DONG,Zhao-quan CAI. Multi view gait cycle detection by fitting geometric features of lower limbs [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2611-2619. |
[3] | Ming-yao XIAO,Xiong-fei LI,Rui ZHU. Medical image fusion based on pixel correlation analysis in NSST domain [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2640-2648. |
[4] | Ya-hui ZHAO,Fei-yu LI,Rong-yi CUI,Guo-zhe JIN,Zhen-guo ZHANG,De LI,Xiao-feng JIN. Korean⁃Chinese translation quality estimation based on cross⁃lingual pretraining model [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2371-2379. |
[5] | Xiao-xin GUO,Jia-hui LI,Bao-liang ZHANG. Joint segmentation of optic cup and disc based on high resolution network [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2350-2357. |
[6] | Xiao-jun JIN,Yan-xia SUN,Jia-lin YU,Yong CHEN. Weed recognition in vegetable at seedling stage based on deep learning and image processing [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2421-2429. |
[7] | Xiang-jiu CHE,Huan XU,Ming-yang PAN,Quan-le LIU. Two-stage learning algorithm for biomedical named entity recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2380-2387. |
[8] | Qing-tian GENG,Zhi LIU,Qing-liang LI,Fan-hua YU,Xiao-ning LI. Prediction of soil moisture based on a deep learning model [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2430-2436. |
[9] | Lian-ming WANG,Xin WU. Method for 3D motion parameter measurement based on pose estimation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2099-2108. |
[10] | Wei-tiao WU,Kun ZENG,Wei ZHOU,Peng LI,Wen-zhou JIN. Deep learning method for bus passenger flow prediction based on multi-source data and surrogate-based optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2001-2015. |
[11] | Fei-fei TANG,Hai-lian ZHOU,Tian-jun TANG,Hong-zhou ZHU,Yong WEN. Multi⁃step prediction method of landslide displacement based on fusion dynamic and static variables [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1833-1841. |
[12] | Pei-yong LIU,Jie DONG,Luo-feng XIE,Yang-yang ZHU,Guo-fu YIN. Surface defect detection algorithm of magnetic tiles based on multi⁃branch convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1449-1457. |
[13] | Zhen-hai ZHANG,Kun JI,Jian-wu DANG. Crack identification method for bridge based on BCEM model [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1418-1426. |
[14] | Ze-qiang ZHANG,Wei LIANG,Meng-ke XIE,Hong-bin ZHENG. Elite differential evolution algorithm for mixed⁃model two⁃side disassembly line balancing problem [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1297-1304. |
[15] | Yan-tao TIAN,Xing HUANG,Hui-qiu LU,Kai-ge WANG,Fu-qiang XU. Multi⁃mode behavior trajectory prediction of surrounding vehicle based on attention and depth interaction [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1474-1480. |
|