Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (9): 2591-2600.doi: 10.13229/j.cnki.jdxbgxb.20220044

Previous Articles     Next Articles

Lightweight iris segmentation model based on multiscale feature and attention mechanism

Guang HUO1(),Da-wei LIN1,Yuan-ning LIU2,3(),Xiao-dong ZHU2,3,Meng YUAN2,Di GAI4   

  1. 1.College of Computer Science,Northeast Electric Power University,Jilin 132012,China
    2.College of Computer Science and Technology,Jilin University,Changchun 130012,China
    3.Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education,Jilin University,Changchun 130012,China
    4.School of Software,Nanchang University,Nanchang 330047,China
  • Received:2022-01-09 Online:2023-09-01 Published:2023-10-09
  • Contact: Yuan-ning LIU E-mail:yanhuo1860@126.com;lyn@jlu.edu.com

Abstract:

Aiming at the problem that deep learning-based iris segmentation models need a large number of parameters, computation cost, and space occupation, a lightweight iris segmentation model is proposed in this paper. First, the feature extraction network of Linknet is replaced with the improved lightweight deep neural network MobileNetv3. This design significantly improves the efficiency of the model while maintaining accuracy. Then, in order to reduce the loss of iris feature information, a multiscale feature extraction module is designed in this paper. Once again, an efficient parallel attention mechanism is introduced to suppress noise interference and enhance the weight of iris region pixels. Finally, the proposed model was compared with other iris segmentation models on three iris databases, and the results showed that the model achieved a better balance between iris segmentation accuracy and efficiency.

Key words: computer application, iris segmentation, deep learning, lightweight network, attention mechanism, multiscale feature

CLC Number: 

  • TP391.41

Fig.1

Overall network structure"

Fig.2

Design of feature extraction module"

Fig.3

Multiscale feature extraction module"

Fig.4

SA module"

Fig.5

Iris images"

Table 1

Comparison with conventional algorithms"

数据集方法MIOUF1RER
CASIA-V4Caht170.80700.7651-0.1470
Ifpp180.78800.6378-0.2372
Wahet190.80900.8949-0.0842
Osiris20-0.89850.97320.0673
IFPP21-0.86860.91740.2372
本文0.97390.98670.97620.0147
IITDAhmad22-0.9520--
GST23-0.33930.4259-
本文0.96990.98470.97510.0163
UBIRIS.V2Caht17-0.1048-0.4809
Ifpp18-0.2899-0.3970
Wahet19-0.1977-0.4498
Osiris20-0.18650.2646-
IFPP21-0.28520.4438-
本文0.95400.97600.95890.0224

Table 2

Comparison with algorithms based on deep learning"

数据集方法MIOUF1RER
CASIA-V4FCEDNs-original24-0.8821-0.0588
FCEDNs-basic24-0.9072-0.0438
FCEDNs-bayesian-basic24-0.9192-0.0407
RTV-L250.78110.87550.8095-
DeepLabV3250.88210.93210.9013-
UNet260.95060.9723--
FD-UNet27-0.9736-0.0125
DFCN10-0.98280.98290.0118
Linknet90.96730.98330.96560.0191
MFFIris-UNet250.94610.9714--
本文0.97390.98670.97620.0147
IITDFCEDNs-original24-0.8661-0.0588
FCEDNs-basic24-0.9072-0.0438
FCEDNs-bayesian-basic24-0.8489-0.0701
FD-UNet27-0.9481-0.0258
DFCN10-0.98120.98060.0137
Linknet90.96410.98170.97920.0173
本文0.96990.98470.97750.0163
UBIRIS.V2DeepLabV3250.70240.87550.8517-
UNet260.93620.9553--
Linknet90.95250.97250.95250.0254
Wang280.9535---
MFFIris-UNet250.94280.96590.9287-
本文0.95400.97600.95890.0224

Table 3

Comparison of the number of parameters, computation amount and storage space of different methods"

方法参数量/M计算量/GMac存储空间/GB
DeepLabV32518.86--
U-Net2634.5365.510.517
DFCN10142.50--
Wang286.21--
Linknet99.820.8220.035
本文0.250.4140.035

Fig.6

Segmentation results on the CASIA-V4 database"

Fig.7

Segmentation results on the IITD database"

Fig.8

Segmentation results on the UBIRIS.V2 database"

Table 4

Results of model ablation experiments"

数据集方法MIOUF1RER
CASIA-V4基准网络0.96890.98380.97020.0183
基准网络+多尺度特征提取模块0.97220.98590.97430.0158
基准网络+SA模块0.97290.98620.97220.0162
本文算法0.97390.98670.97620.0147
IITD基准网络0.96240.98080.96620.0212
基准网络+多尺度特征提取模块0.96800.98370.97790.0163
基准网络+SA模块0.96660.98300.97270.0181
本文算法0.96990.98470.97750.0163
UBIRIS.V2基准网络0.94590.97110.95310.0238
基准网络+多尺度特征提取模块0.95060.97360.95420.0236
基准网络+SA模块0.95130.97450.95790.0232
本文算法0.95400.97600.95890.0224

Fig.9

Visualization results of different networks"

Fig.10

Segmentation results of different networks"

Fig.11

Segmentation result"

Table 5

Experiment results"

方法准确率/%
U-Net2696.73
Linknet997.86
本文98.92
1 Arsalan M, Naqvi R A, Kim D S, et al. IrisDenseNet: robust iris segmentation using densely connected fully convolutional networks in the images by visible light and near-infrared light camera sensors[J]. Sensors, 2018, 18(5): No.1501.
2 Huo Guang, Lin Da-wei, Yuan Meng, et al. Heterogeneous iris segmentation method based on modified U-Net[J]. Journal of Electronic Imaging, 2021, 30(6): No.063015.
3 Umer S, Dhara B C. A fast iris localization using inversion transform and restricted circular hough transform[C]∥Proceedings of the 2015 8th International Conference on Advances in Pattern Recognition, Kolkata, India, 2015: 1-6.
4 Bendale A, Nigam A, Prakash S, et al. Iris segmentation using improved hough transform[C]∥Proceedings of the 8th International Conference on Intelligent Computing, Huangshan, China, 2012: 408-415.
5 Roy D A, Soni U S. IRIS segmentation using Daughman's method[C]∥Proceedings of the 2016 International Conference on Electrical, Electronics, and Optimization Techniques, Chennai, India, 2016: 2668-2676.
6 周锐烨, 沈文忠. PI-Unet: 异质虹膜精确分割神经网络模型的研究[J]. 计算机工程与应用, 2021, 57(15): 223-229.
Zhou Rui-ye, Shen Wen-zhong. PI-Unet: research on precise iris segmentation neural network model for heterogeneous iris[J]. Computer Engineering and Applications, 2021, 57(15): 223-229.
7 Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651.
8 Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation[C]∥Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234-241.
9 Chaurasia A, Culurciello E. LinkNet: exploiting encoder representations for efficient semantic segmentation[C]∥Proceedings of the 2017 IEEE Visual Communications and Image Processing, Petersburg, USA, 2017: 1-4
10 Chen Ying, Wang Wen-yuan, Zeng Zhuang, et al. An adaptive CNNs technology for robust iris segmentation[J]. IEEE Access, 2019, 7: 64517-64532.
11 Wang Cai-yong, Wang Yun-long, Xu Bo-qiang, et al. A lightweight multi-label segmentation network for mobile iris biometrics[C]∥Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, Spain, 2020: 1006-1010.
12 Zhong Z L, Lin Z, Bidart R, et al. Squeeze-and-attention networks for semantic segmentation[C]∥Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 13062-13071.
13 Biometrics ideal test. CASIA.v4 Database[DB/OL]. [2022-01-06].
14 Kumar A, Passi A. Comparison and combination of iris matchers for reliable personal authentication[J]. Pattern Recognition, 2010, 43(3): 1016-1026.
15 Proena H, Filipe S, Santos R, et al. The UBIRIS.v2: a database of visible wavelength iris images captured on-the-move and at-a-distance[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(8): 1529-1535.
16 Milletari F, Navab N, Ahmadi S A. V-Net: fully convolutional neural networks for volumetric medical image segmentation[C]∥Proceedings of the 2016 4th International Conference on 3D Vision, Stanford, USA, 2016: 565-571.
17 Rathgeb C. Iris Biometrics from Segmentation to Template Security[M]. Iris Biometrics: From Segmentation to Template Security, 2012.
18 Wild P, Hofbauer H, Ferryman J, et al. Segmentation-level fusion for iris recognition[C]∥Proceedings of the 2015 International Conference of the Biometrics Special Interest Group, Darmstadt, Germany, 2015: 1-6.
19 Uhl A, Wild P. Weighted adaptive hough and ellipsopolar transforms for real-time iris segmentation[C]∥Proceedings of the 2012 5th IAPR International Conference on Biometrics, New Delhi, India, 2012: 283-290.
20 A biometric reference system for iris, ersion osiris V 4.1[EB/OL]. [2022-01-06].
21 Uhl A, Wild P. Multi-stage visible wavelength and near infrared iris segmentation framework[C]∥Proceedings of the International Conference Image Analysis and Recognition, Aveiro, Portugal, 2012: 1-10.
22 Ahmad S, Fuller B. Unconstrained iris segmentation using convolutional neural networks[C]∥Proceedings of the Asian Conference on Computer Vision, Perth, Australia, 2018: 450-466.
23 Alonsofern J O. Iris boundaries segmentation using the generalized structure tensor—a study on the effects of image degradation[C]∥Proceedings of the 2012 5th IEEE International Conference on Biometrics: Theory, Applications and Systems, Arlington, USA, 2012: 426-431.
24 Ehsaneddin J, Andreas U. Iris segmentation using fully convolutional encoder-decoder Networks[C]∥Proceedings of the Computer Vision and Pattern Recognition, New York, USA, 2017: 133-155.
25 尤轩昂, 赵鹏, 慕晓冬, 等. 融合注意力机制与密集多尺度特征的异质噪声虹膜分割方法[J]. 激光与光电子学进展,2022, 59(4): 109-120
You Xuan-ang, Zhao Peng, Mu Xiao-dong, et al. Heterogeneous noise iris segmentation based on attention mechanism and dense multi-scale features[J]. Laser & Optoelectronics Progress, 2022, 59(4): 109-120.
26 Lozej J, Meden B, Struc V, et al. End-to-end iris segmentation using U-Net[C]∥Proceedings of the 2018 IEEE International Work Conference on Bioinspired Intelligence,San Carlos, Costa Rica, 2018: 1-6.
27 Zhang Wei, Lu Xiao-qi, Gu Yu, et al. A robust iris segmentation scheme based on improved U-Net[J]. IEEE Access, 2019, 7: 85082-85089.
28 Wang Qi, Meng Xiang-yue, Sun Ting, et al. A light iris segmentation network[J]. The Visual Computer, 2021, 38: 2591-2601.
29 He Kai-ming, Zhang Xiang-yu, Ren Shao-qiang, et al. Deep residual learning for image recognition[C]∥Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770-778.
[1] Ying HE,Zhuo-ran WANG,Xu ZHOU,Yan-heng LIU. Point of interest recommendation algorithm integrating social geographical information based on weighted matrix factorization [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2632-2639.
[2] Yun-zuo ZHANG,Xu DONG,Zhao-quan CAI. Multi view gait cycle detection by fitting geometric features of lower limbs [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2611-2619.
[3] Ming-yao XIAO,Xiong-fei LI,Rui ZHU. Medical image fusion based on pixel correlation analysis in NSST domain [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2640-2648.
[4] Ya-hui ZHAO,Fei-yu LI,Rong-yi CUI,Guo-zhe JIN,Zhen-guo ZHANG,De LI,Xiao-feng JIN. Korean⁃Chinese translation quality estimation based on cross⁃lingual pretraining model [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2371-2379.
[5] Xiao-xin GUO,Jia-hui LI,Bao-liang ZHANG. Joint segmentation of optic cup and disc based on high resolution network [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2350-2357.
[6] Xiao-jun JIN,Yan-xia SUN,Jia-lin YU,Yong CHEN. Weed recognition in vegetable at seedling stage based on deep learning and image processing [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2421-2429.
[7] Xiang-jiu CHE,Huan XU,Ming-yang PAN,Quan-le LIU. Two-stage learning algorithm for biomedical named entity recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2380-2387.
[8] Qing-tian GENG,Zhi LIU,Qing-liang LI,Fan-hua YU,Xiao-ning LI. Prediction of soil moisture based on a deep learning model [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2430-2436.
[9] Lian-ming WANG,Xin WU. Method for 3D motion parameter measurement based on pose estimation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2099-2108.
[10] Wei-tiao WU,Kun ZENG,Wei ZHOU,Peng LI,Wen-zhou JIN. Deep learning method for bus passenger flow prediction based on multi-source data and surrogate-based optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2001-2015.
[11] Fei-fei TANG,Hai-lian ZHOU,Tian-jun TANG,Hong-zhou ZHU,Yong WEN. Multi⁃step prediction method of landslide displacement based on fusion dynamic and static variables [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1833-1841.
[12] Pei-yong LIU,Jie DONG,Luo-feng XIE,Yang-yang ZHU,Guo-fu YIN. Surface defect detection algorithm of magnetic tiles based on multi⁃branch convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1449-1457.
[13] Zhen-hai ZHANG,Kun JI,Jian-wu DANG. Crack identification method for bridge based on BCEM model [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1418-1426.
[14] Ze-qiang ZHANG,Wei LIANG,Meng-ke XIE,Hong-bin ZHENG. Elite differential evolution algorithm for mixed⁃model two⁃side disassembly line balancing problem [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1297-1304.
[15] Yan-tao TIAN,Xing HUANG,Hui-qiu LU,Kai-ge WANG,Fu-qiang XU. Multi⁃mode behavior trajectory prediction of surrounding vehicle based on attention and depth interaction [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1474-1480.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[5] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] Zhang He-sheng, Zhang Yi, Wen Hui-min, Hu Dong-cheng . Estimation approaches of average link travel time using GPS data[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .
[10] Qu Zhao-wei,Chen Hong-yan,Li Zhi-hui,Hu Hong-yu,Wei Wei . 2D view reconstruction method based on single calibration pattern
[J]. 吉林大学学报(工学版), 2007, 37(05): 1159 -1163 .