Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (12): 3367-3378.doi: 10.13229/j.cnki.jdxbgxb.20220075

Previous Articles    

Quality analysis of abrasive flow precision machining of cross hole of valve sleeve

Jing GUO1(),Lin GUI1,Wei HOU1,Jun-ye LI2(),Zhi-bao ZHU2,Li-wei SUN2   

  1. 1.Key Laboratory of Vehicle Transmission,China North Vehicle Research Institute,Beijing 100072,China
    2.Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing,Changchun University of Science and Technology,Changchun 130022,China
  • Received:2022-01-18 Online:2023-12-01 Published:2024-01-12
  • Contact: Jun-ye LI E-mail:jjxiong@yeah.net;ljy@cust.edu.cn

Abstract:

The abrasive flow precision machining method was used to deburr the cross hole of the valve sleeve. Through the large eddy simulation method and the reasonable sub-grid model, the numerical simulation analysis was carried out for the valve sleeve workpiece under the condition of side hole outflow. Under the condition of different flow velocities and viscosity, the effects of fluid strain rate, velocity vector, and wall shear force on the fillet radius of cross-hole edge, burr removal, and radial hole wall processing quality were analyzed. The experimental results show that the lower the fluid viscosity and the higher the speed, the larger the fillet radius of the edge of the cross hole, the higher the viscosity and the speed, and the higher the processing quality of the radial hole wall. To ensure that the edge of the cross hole has a small fillet, the low-speed and high viscosity fluid should be selected for the precision processing of the cross hole of the valve sleeve.

Key words: machinery manufacturing technology and equipment, abrasive flow precision machining, valve sleeve cross hole, burr removal, quality analysis

CLC Number: 

  • TH161.1

Fig.1

Abrasive flow micro-cutting process"

Fig.2

Contact model of abrasive particles and workpiece"

Fig.3

Specific size of valve sleeve parts"

Fig.4

Runner structure section and area division"

Fig.5

Actual machining parts"

Fig.6

Schematic diagram of data point"

Fig.7

Velocity cloud diagrams at different viscosities"

Fig.8

Strain rate cloud diagram at different viscosities"

Table 1

Data of edge strain rate of cross hole with different viscosity"

黏度/

(Pa·s)

径向孔1径向孔2径向孔3
点1点2点3点4点5点6
0.0451.0540.9461.0471.0181.0601.145
0.10.9680.8430.9490.8820.9601.002
0.150.9340.8070.9240.8290.9040.957

Fig.9

Three-dimensional surface plot of strain rate at the edge of cross-holes with different viscosities"

Fig.10

Shear force cloud diagram of wall with different viscosities"

Table 2

Data sheet of wall shear force with different viscosity"

黏度/ (Pa·s)径向孔1径向孔2径向孔3
0.0451 69433 7631 43321 2774 40916 188
0.120636 7765 48729 90710 86019 326
0.1590837 7785 88233 24913 81521 571

Fig.11

Three-dimensional surface plot of wall shear force with different viscosities"

Fig.12

Velocity clouds of abrasive grain flow at different inlet velocities"

Table 3

Velocity data near the edge of the cross hole m/s"

速度/

(m·s-1

径向孔1径向孔2径向孔3
点7点8点9点10点11点12
34.861.854.462.593.863.79
46.542.516.033.605.325.16
58.193.177.644.636.846.64

Fig.13

Three-dimensional surface graph of velocity near the edge of the cross hole"

Fig.14

Speed vector"

Fig.15

Strain rate cloud diagram at different speeds"

Table 4

Data table of strain rate at the edge of cross hole at different speeds"

速度/

(m·s-1

径向孔1径向孔2径向孔3
点1点2点3点4点5点6
34.774.104.844.304.764.97
47.046.157.158.587.157.46
59.428.499.739.139.8910.18

Fig.16

Three-dimensional surface plot of strain rate at the edge of cross hole at different speeds"

Fig.17

Clouds of wall shear force at different speeds"

Table 5

Shear force data table on the left and right walls of radial holes at different speeds"

速度/

(m·s-1

径向孔1径向孔2径向孔3
31 07716 3633 34712 6226 7389 071
41 24023 4072 93616 6247 44611 273
51 44230 4221 13919 7546 46312 373

Fig.18

Three-dimensional surface plot of the shear force on the left and right walls of a radial hole at different speeds"

Table 6

Full factorial experimental design"

样件标号速度/(m·s-1黏度/(Pa·s)
21#30.15
22#50.15
23#50.045
24#30.045

Table 7

Roughness summary table"

测量位置粗糙度/μm测量位置粗糙度/μm
原件左0.171样件22#右0.043
原件右0.177样件23#左0.074
样件21#左0.061样件23#右0.069
样件21#右0.063样件24#左0.104
样件22#左0.041样件24#右0.096

Fig.19

Comparison of abrasive flow machining of radial hole 3 scanning electron microscope data map"

Fig.20

Macroscopic morphology of radial holes before abrasive flow machining"

Fig.21

Macroscopic morphology of radial holes after abrasive flow processing"

1 孙振贵, 邢天羿, 邵铭, 等. 超精密阀套内孔的珩磨工艺研究[J]. 航空精密制造技术,2019,55(2):53-56.
Sun Zhen-gui, Xing Tian-yi, Shao Ming, et al. Honing process research about ultra-precision valve sleeve bore[J]. Aviation Precision Manufacturing Technology, 2019, 55(2): 53-56.
2 朱西薇, 车飞, 方兵, 等. 电液伺服阀自动化配研磨技术研究[J]. 液压气动与密封, 2020, 40(3): 80-84.
Zhu Xi-wei, Che Fei, Fang Bing, et al. Research on auto-matching grinding technology of electro-hydraulic servo valve[J]. Hydraulics Pneumatics & Seals, 2020, 40(3): 80-84.
3 张静, 朱春江, 赵龙. 航空精密偶件去毛刺方法的研究[J]. 航空精密制造技术, 2014, 50(2): 54-55.
Zhang Jing, Zhu Chun-jiang, Zhao Long. Research on deburring approach of aviation precision matching parts[J]. Aviation Precision Manufacturing Technology, 2014, 50(2): 54-55.
4 Gillespie L K. Deburring precision miniature parts[J]. Precision Engineering, 1979, 1(4): 189-198.
5 Kotte G. Precision machining: technology and machine development and improvement[J]. Precision Engineering, 2012, 15(4): 455-460.
6 Fu Y, Gao H, Yan Q, et al. Rheological characterisation of abrasive media and finishing behaviours in abrasive flow machining[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(7): 3569-3580.
7 Kumar S S, Hiremath S S. A review on abrasive flow machining (AFM)[J]. Procedia Technology, 2016, 25: 1297-1304.
8 Cheema M S, Venkatesh G, Dvivedi A, et al. Developments in abrasive flow machining: a review on experimental investigations using abrasive flow machining variants and media[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2012, 226(12): 1951-1962.
9 Fu Y, Gao H, Yan Q, et al. An efficient approach to improving the finishing properties of abrasive flow machining with the analyses of initial surface texture of workpiece[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(5): 2417-2432.
10 Suzuki H, Ohashi K. Special issue on precision abrasive technology of difficult-to-machine materials[J]. International Journal of Automation Technology, 2018, 12(6): 861.
11 Dixit N, Sharma V, Kumar P. Research trends in abrasive flow machining: a systematic review[J]. Journal of Manufacturing Processes, 2021, 64: 1434-1461.
12 Kim K J, Kim Y G, Kim K H. Characterization of deburring by abrasive flow machining for AL6061[J]. Applied Sciences, 2022, 12(4): No. 2048.
13 Li Jun-ye, Zhu Zhi-bao, Hu Jing-lei, et al. Particle collision-based abrasive flow mechanisms in precision machining[J]. International Journal of Advanced Manufacturing Technology, 2020, 110(7): 1819-1831.
14 李俊烨, 胡敬磊, 杨兆军, 等. 离散相磨粒粒径对磨粒流研抛共轨管质量的影响[J]. 吉林大学学报:工学版, 2018, 48(2): 492-499.
Li Jun-ye, Hu Jing-lei, Yang Zhao-jun, et al. Effect on the quality of abrasive flow polishing the common rail pipe in size of discrete phase abrasive particle[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(2): 492-499.
15 Li Jun-ye, Meng Wen-qing, Dong Kun, et al. Numerical analysis of solid-liquid two-phase abrasive flow in microcutting polycrystalline materials based on molecular dynamics[J]. International Journal of Precision Engineering and Manufacturing, 2018, 19(11): 1597-1610.
16 Wei H, Peng C, Gao H, et al. On establishment and validation of a new predictive model for material removal in abrasive flow machining[J]. International Journal of Machine Tools and Manufacture, 2019, 138: 66-79.
17 Guo J, Song C, Fu Y, et al. Internal surface quality enhancement of selective laser melted inconel 718 by abrasive flow machining[J]. Journal of Manufacturing Science and Engineering, 2020, 142(10): No. 101003.
18 Yuan Q, Qi H, Wen D. Numerical and experimental study on the spiral-rotating abrasive flow in polishing of the internal surface of 6061 aluminium alloy cylinder[J]. Powder Technology, 2016, 302: 153-159.
19 Furumoto T, Ueda T, Amino T, et al. A study of internal face finishing of the cooling channel in injection mold with free abrasive grains[J]. Journal of Materials Processing Technology, 2011, 211(11): 1742-1748.
20 李俊烨, 朱旭, 杨兆军, 等. 固液两相磨料流的微小孔精密研抛行为[J].吉林大学学报: 工学版, 2020, 50(3): 903-913.
Li Jun-ye, Zhu Xu, Yang Zhao-jun, et al. Micro-hole precision grinding and polishing behavior of solid-liquid two-phase abrasive flow[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(3): 903-913.
21 李忠新. 精密复杂微小型构件车铣复合加工技术研究[D]. 北京: 北京理工大学机械与车辆学院, 2014.
Li Zhong-xin. Research on turning and milling compound machining technology of precise and complex micro-miniature components[D]. Beijing: School of Machinery and Vehicles, Beijing Institute of Technology, 2014.
[1] LI Jun-ye, HU Jing-lei, YANG Zhao-jun, ZHANG Xin-ming, ZHOU Zeng-wei. Effect of the size of discrete phase abrasive particles on the abrasive flow polishing quality of common rail pipe [J]. 吉林大学学报(工学版), 2018, 48(2): 492-499.
[2] LI Jun-ye, QIAO Ze-min, YANG Zhao-jun, ZHANG Xin-ming. Influence of abrasive concentration on processing quality of abrasive flow in mesoscopic scale [J]. 吉林大学学报(工学版), 2017, 47(3): 837-843.
[3] GUO Zhe-feng, TANG Wen-cheng. Stress analysis of cup-shaped parts in secondary deep drawing [J]. 吉林大学学报(工学版), 2016, 46(2): 494-499.
[4] LI Song-sheng, ZHAO Yan-wei, GU Xi-ren. Application of improved FUP algorithm on hardware product quality analysis system [J]. 吉林大学学报(工学版), 2012, 42(增刊1): 251-254.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!