Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (6): 1657-1664.doi: 10.13229/j.cnki.jdxbgxb.20220856

Previous Articles    

Influence of diagonal brace layout scheme on collapse resistance of high formwork

Xin GAO1,2(),Jian HE1,Chun-guang LAN2,Ze-qiang WANG2   

  1. 1.College of Construction Engineering,Jilin University,Changchun 130021,China
    2.Beijing Construction Engineering Research Institute Co. ,Ltd. ,Beijing 100039,China
  • Received:2022-07-05 Online:2024-06-01 Published:2024-07-23

Abstract:

Based on LS-DYNA, the influence of four kinds of diagonal bracing layout schemes of symmetric matrix type, symmetric plum blossom type, spiral matrix type and spiral plum blossom type on the ultimate bearing capacity of high formwork and the failure law of vertical rods was compared and analyzed. The dynamic response law of high formwork under sudden failure of key vertical rods was studied by using the transformed load path method (AP method). The collapse resistance of high formwork was evaluated by combining displacement ratio method and stress ratio method. The results show that compared with the ultimate bearing capacity, spiral plum blossom type>symmetrical plum blossom type>spiral matrix type>symmetrical matrix type. In the symmetrical layout scheme, the bottom layer of the Ⅰ-type vertical rods is destroyed first, and the specific position of the initial instability vertical rods of the spiral frame is irregular. Comparison of collapse resistance of high formwork, spiral plum blossom type>symmetrical plum blossom type>symmetrical matrix type>spiral matrix type.

Key words: building structure, disc-buckle support system, inclined bracing erection, ultimate bearing capacity, collapse law, resistance to progressive collapse, dynamic response

CLC Number: 

  • TU318

Table 1

Finite element model parameters"

构件类型单元类型单元截面/mm弹性模量/MPa密度/(kg?m-3)泊松比屈服应力/MPa
立杆BEAM161?60×3.22.06×1057.8×1030.3345
水平杆BEAM161?48×2.52.06×1057.8×1030.3235
斜撑LINK160?42.8×2.52.06×1057.8×1030.3235
顶部模板SHELL16340(厚)8.00×1036.0×1020.33120

Fig.1

Constitutive model of vertical rods material"

Fig.2

Schematic diagram of vertical bracing erection and plane layout scheme of inclined strut"

Fig.3

Schematic diagram of LS-DYNA model"

Fig.4

Schematic diagram of vertical rods number"

Fig.5

Load displacement curves of four initial instability vertical rods"

Table 2

Ultimate bearing capacity of frame"

斜撑搭设

工况

对称式矩阵型对称式梅花型螺旋式矩阵型螺旋式梅花型
极限承载力/ KN45.754846.0548.45

Table 3

Related parameters of initial instability vertical rods of four types of frames"

架体类型立杆编号失稳位置/层失稳时间/s最大水平位移/mm最大单元应力/MPa
对称式矩阵型14#(I型立杆)11.52521.17356.05
对称式梅花型62#(I型立杆)11.60029.97413.64
螺旋式矩阵型50#11.53527.12354.01
螺旋式梅花型58#11.61537.25421.50

Fig.6

Axial force time-history curve of the first vertical rods element of symmetrical matrix frame"

Fig.7

Axial force time-history curve of the seventh vertical rods element of symmetrical matrix frame"

Fig.8

Axial force time-history curve of the first vertical rods element of spiral matrix frame"

Fig.9

Axial force time-history curve of the seventhvertical rods element of spiral matrix frame"

Fig.10

Analysis steps of progressive collapse resistance of frame"

Fig.11

Load time-history curve of key vertical rod demolition"

Fig.12

14 # vertical rod failure position displacement time-history curve"

Fig.13

13 # vertical rod stress time-history curve"

Table 4

Maximum displacement growth rate at failure position of key vertical rods"

架体类型立杆编号初始稳定位移/mm最大位移/mm位移最大增长率/%
对称式矩阵型14#(I型立杆)0.7983.32316.04
对称式梅花型62#(I型立杆)0.9612.74185.12
螺旋式矩阵型50#0.5422.58376.01
螺旋式梅花型58#1.0602.68152.83

Table 5

Maximum stress growth rate of adjacent key vertical rods"

架体类型立杆编号

初始稳定

应力/mm

最大应力/mm应力最大增长率/%

对称式

矩阵型

5#78.412154.34
6#68.510160.58
13#57.410379.44

对称式

梅花型

53#86.510420.23
54#52.571.235.62
61#59.785.543.22

螺旋式

矩阵型

49#47.186.784.08
57#54.497.479.04
58#57.396.568.41

螺旋式

梅花型

49#66.976.414.2
50#41.751.323.02
57#67.285.126.64
1 时炜. 承插型盘扣式脚手架在高大模板支撑中的应用[J]. 建筑施工,2005,37(9):1091-1093.
Shi Wei. Application of bell-sigot bearing-insertion scaffold to high and large formwork support system[J]. Building Construction, 2005, 37(9): 1091-1093.
2 葛元辉. 高支模施工技术在房建土建工程中的应用研究[J]. 施工技术,2021,48(7):30-32.
Ge Yuan-hui. Research on the application of high formwork construction technology in housing construction and civil engineering[J]. Construction Technology, 2021, 48(7):30-32.
3 孙世梅. 2010~2016年建筑施工脚手架坍塌事故统计分析[J]. 吉林建筑大学学报, 2018, 35(4):33-36.
Sun Shi-mei. Statistical analysis of collapse accidents of construction scaffolding in 2010~2016[J]. Journal of Jilin Jianzhu University, 2018, 35(4): 33-36.
4 庄金平,蔡雪峰,郑永乾,等. 高大模板扣件式钢管支撑系统整体受力性能研究[J]. 土木工程学报, 2016, 49(10): 57-63, 87.
Zhuang Jin-ping, Cai Xue-feng, Zheng Yong-qian, et al. Study on the overall stability of high and large formwork support system with fastening style steel pipe[J]. China Civil Engineering Journal, 2016, 49(10): 57-63, 87.
5 龚照森. 扣件式钢管模板支架抗连续性倒塌理论分析[D]. 重庆: 重庆大学土木工程学院, 2013.
Gong Zhao-sen. Theoretical study about resisting progressive collapse of fastener steel tubular formwork supports[D]. Chongqing: College of Civil Engineering, Chongqing University, 2013.
6 韩源彬. 盘扣式模板支撑架承载性能研究与应用[D]. 北京: 清华大学土木工程系, 2018.
Han Yuan-bin. Research and application on load-bearing capacity of socket plate fastener type scaffold [D]. Beijing: Department of Civil Engineering, Tsinghua University, 2018.
7 刘莉,王萌,吴金国,等. 现浇混凝土模板体系可调支托伸出长度[J]. 沈阳建筑大学学报:自然科学版, 2015, 31(3): 466-473.
Liu Li, Wang Meng, Wu Jin-guo, et al. Study on the extended length of adjustable bearing bracket in cast-inplace concrete formwork system[J]. Journal of Shenyang Jianzhu University (Natural Science), 2015, 31(3): 466-473.
8 袁庆凯. 扣件式满堂支撑体系垮塌机理数值模拟[D]. 秦皇岛: 燕山大学建筑工程与力学学院, 2015.
Yuan Qing-kai. The numerical simulation on collapse mechanism of fastener type full framing support system[D]. Qinghuangdao: School of Civil Engineering and Mechanics, Yanshan University, 2015.
9 唐柱才. 应用有限元程序ANSYS/LS-DYNA进行结构的屈曲模拟[J]. 化工装备与技术, 2004, 25(3): 27-31.
Tang Zhu-cai. The finite element program ANSYS/LS-DYNA was used to simulate the buckling of the structure[J]. Chemical Equipment and Technology, 2004, 25(3): 27-31.
10 周潭飞. 盘扣式钢管模板支撑架稳定承载力研究[D]. 西安: 西安建筑科技大学建筑与土木工程学院, 2019.
Zhou Tan-fei. Study on stability bearing capacity of disc-fastened steel tube formwork supporting frame [D]. Xi'an: School of Architecture and civil Engineering, Xi'an University of Architecture and Technology, 2019.
11 , 建筑施工承插型盘扣式钢管支架安全技术规程 [S].
12 刘成清. ANSYS/LS-DYNA工程结构抗震、抗撞击与抗连续倒塌分析[M]. 北京:中国建筑工业出版社, 2014.
13 陈桂香,郭泽群,胡德平,等. 承插型盘扣式钢管支架盘扣节点扭矩-转角模型适用性研究[J]. 西安建筑科技大学学报:自然科学版, 2020, 52(2): 192-199.
Chen Gui-xiang, Guo Ze-qun, Hu De-ping, et al. Study on applicability of torque-rotation model of disk-pin joint node of disk lock steel tubular scaffold [J]. Journal of Xi'an University of Architecture and Technology. (Natural Science Edition), 2020, 52(2): 192-199.
14 李晓旭. 盘扣式支架单根立杆竖向承载性能的研究与应用[D]. 合肥: 安徽建筑大学土木工程学院, 2020.
Li Xiao-xu. Research and application of vertical bearing capacity of single upright of disc button bracket [D]. Hefei: College of Civil Engineering, Anhui Jianzhu University, 2020.
15 胡晓斌. 单层平面钢框架连续倒塌动力效应分析[J]. 工程力学, 2008, 25(6): 38-43.
Hu Xiao-bin. Dynamic effect analysis during progressive collapse of a single-story steel plane frame[J]. Engineering Mechanics, 2008, 25(6): 38-43.
16 江晓峰. 建筑结构连续性倒塌及其控制设计的研究现状[J]. 土木工程学报, 2008, 41(6): 1-8.
Jiang Xiao-feng. A review on the progressive collapse and control design of building structures[J]. China Civil Engineering Journal, 2008, 41(6): 1-8.
17 蔡建国. 大跨空间结构连续倒塌分析若干问题探讨[J]. 工程力学, 2012, 29(3): 143-149.
Cai Jian-guo. Discussion on the progressive collapse analysis of long-span space structures[J]. Engineering Mechanics, 2012, 29(3): 143-149.
18 张月强. 大跨度钢结构抗连续倒塌动力分析关键问题研究[J]. 建筑结构学报, 2014, 35(4): 49-56.
Zhang Yue-qiang. Study on key issues of dynamic analysis for anti-progressive collapse of large span steel structure[J]. Journal of Building Structures, 2014, 35(4): 49-56.
19 李海锋,郭小农,罗永峰,等. 索支撑柔性摩天轮结构抗倒塌性能分析[J]. 吉林大学学报:工学版, 2015, 45(2): 406-413.
Li Hai-feng, Guo Xiao-nong, Luo Yong-feng, et al. Collapse resistance behavior of Ferris wheel with stay cables[J]. Journal of Jilin University (Engineering and Technology Edition), 2015, 45(2): 406-413.
[1] Zhen-yong DI,Xin-hui YANG. Characteristic distribution of inter story deformation of building structure after earthquake [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1377-1384.
[2] Zhi-qiang HAN,Gang XIE,Ya-juan ZHUO,Zuo-long LUO,Hua-teng LI. Vibration response of continuous girder bridge based on wheel⁃deck coherent excitation [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 436-444.
[3] Guo-hui CHEN,Ye-yin XU,Ying-hou JIAO. Meshing stiffness calculation and vibration analysis of helical gear considering deflection [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 1902-1910.
[4] Qing-xia ZHANG,Ji-lin HOU,Xin-hao AN,Xiao-yang HU,Zhong-dong DUAN. Road roughness identification method based on vehicle impulse response [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1765-1772.
[5] Zi-yu LIU,Shi-tong CHEN,Mo-mo ZHI,Xiao-ming HUANG,Zhe-xin CHEN. Ultimate bearing capacity of temporary⁃permanent conversion rushrepair steel pier for emergency use [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1601-1611.
[6] Zhi-qiang HAN,Gang XIE,Yong-jun ZHOU,Shi-zhong LIU,Min-jie JIN. Numerical analysis method of vehicle⁃bridge coupling vibration of curved bridge [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 515-522.
[7] Yi MA,Jian ZHANG,Mei-xiang YOU,Rong GONG,Te-li HE,Wei FANG. Optimization of dynamic control strategy of fuel cell air supply system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2175-2181.
[8] Jun CHEN,Shao-xian WANG,Hui XU,Duan-quan MO,Jing-si HUO,Xu-hua DENG. Experiment on mechanical properties of detachable prefabricated composite beams subjected to negative bending moment [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 604-614.
[9] Chang-jun ZHONG,Zhong-bin WANG,Chen-yang LIU. Influencing factors and structural optimization of main cable saddle bearing capacity of suspension bridge [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2068-2078.
[10] Jing ZHOU,Ya-jun LI,Wei-feng ZHAO,Zong-jian LUO,Guo-bin BU. Eccentric compression behavior of bamboo⁃plywood and steel⁃tube dual⁃confined dust⁃powder concrete columns [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2096-2107.
[11] Ya-feng GONG,Jia-xiang SONG,Guo-jin TAN,Hai-peng BI,Yang LIU,Cheng-xin SHAN. Multi⁃vehicle bridge weigh⁃in⁃motion algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 583-596.
[12] ZHANG Yun-long, LIU Zhan-ying, WU Chun-li, WANG Jing. Static and dynamic responses of steel-concrete composite beams [J]. 吉林大学学报(工学版), 2017, 47(3): 789-795.
[13] LI Jing, YANG Xiong, MIAO Hui, SHI Zheng-tang. Dynamic characteristics of electronic hydraulic brake system based on bench test [J]. 吉林大学学报(工学版), 2016, 46(1): 15-20.
[14] HOU Zhong-ming, WANG Yuan-qing, XIA He, ZHANG Tian-shen. Simply-supported steel-concrete composite beams under moving load [J]. 吉林大学学报(工学版), 2015, 45(5): 1420-1427.
[15] CHENG Qiang, ZHANG Zhen-dong, GUO Hui, XIE Nai-liu. Electro-magnetic-thermal coupling of GDI injector [J]. 吉林大学学报(工学版), 2015, 45(3): 806-813.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!