Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (9): 2175-2181.doi: 10.13229/j.cnki.jdxbgxb20220329

Previous Articles    

Optimization of dynamic control strategy of fuel cell air supply system

Yi MA(),Jian ZHANG,Mei-xiang YOU,Rong GONG,Te-li HE,Wei FANG   

  1. Technical Center,Dongfeng Motor Corporation,Wuhan 430056,China
  • Received:2022-03-29 Online:2022-09-01 Published:2022-09-13

Abstract:

In order to improve the dynamic response performance of the air system of the proton exchange membrane fuel cell, the one-dimensional simulation model of the fuel cell system was established by AMESim software. The process of the air dynamic response of the fuel cell was simulated, and the air dynamic control strategy was optimized. The optimized control strategy was tested and verified on the fuel cell system bench. The test results showed that the new control strategy successfully achieved the decoupling of air pressure and flow, which greatly reduced the air starvation and avoided the low voltage of the stack during the dynamic loading process of the fuel cell system. The new control strategy improves the dynamic response rate of the fuel cell system.

Key words: system engineering, fuel cell, air supply system, dynamic response, control strategy

CLC Number: 

  • TM911.4

Fig.1

Stack current and cell minimum voltage"

Fig.2

Change curve of air pressure"

Fig.3

Change curve of air flow"

Fig.4

Air compressor speed and back pressure valve opening"

Fig.5

Air compressor MAP"

Fig.6

Simulation model of fuel cell system"

Table1

Fuel cell system parameters"

序号参数单位数值
1系统额定功率kW55
2系统最高效率%≥60
3电堆输出电压V210~320
4氢气利用率%≥95
5通信方式-CAN2.0
6绝缘电阻Ω/V≥500
7防护等级-IP67

Fig.7

Simulation results of air compressor speed and back pressure valve opening"

Fig.8

Simulation results of air compressorMAP operation line"

Fig.9

Expected MAP of control effect"

Fig.10

Back pressure valve control module in AMESim"

Fig.11

Simulation results of air pressure for optimized"

Fig.12

Simulation results of air compressor speed and back pressure valve opening for optimized"

Fig.13

Simulation results of the air compressor MAP operation line for optimized"

Fig.14

Test results of HIL"

Fig.15

Test bench schematic"

Fig.16

Stack current and cell minimum voltage test results"

Fig.17

Change curve of air pressure test results"

Fig.18

Change curve of air flow test results"

Fig.19

Air compressor speed and back pressurevalve opening test results"

Fig.20

Air compressor MAP test results"

1 王哲, 谢怡, 臧鹏飞, 等. 基于极小值原理的燃料电池客车能量管理策略[J].吉林大学学报: 工学版, 2020, 50(1): 36-43.
Wang Zhe, Xie Yi, Zang Peng-fei, et al. Energy management strategy of fuel cell bus based on Pontryagin's minimum principle[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(1): 36-43.
2 衣宝廉. 燃料电池-原理·技术·应用[M]. 北京:化学工业出版社, 2003.
3 张剑, 史建鹏, 贺挺,等. 插电式燃料电池乘用车整车开发[C]∥中国汽车工程学会会议论文集, 中国上海, 2018.
4 詹姆斯·拉米尼. 燃料电池系统-原理·技术·应用[M].北京:科学出版社, 2005.
5 马义, 张剑, 李波, 等. AMESim仿真软件在燃料电池系统开发中的应用[J]. 汽车科技, 2021, 48(2): 52-56.
Ma Yi, Zhang Jian, Li Bo, et al. Application of AMESim in fuel cell system development[J]. Auto SCI-TECH, 2021, 48(2): 52-56.
6 李正辉. 车用质子交换膜燃料电池系统空气路解耦控制研究[D]. 青岛:青岛理工大学机械与汽车工程学院, 2021.
Li Zheng-hui. Research on air circuit decoupling control of vehicle proton exchange membrane fuel cell system [D]. Qingdao: School of Mechanical & Automotive Engineering,Qingdao University of Technology, 2021.
7 杨朵.燃料电池空气供给系统控制与故障诊断策略研究[D].合肥:中国科学技术大学信息科学技术学院, 2021.
Yang Duo. Research on control and fault diagnosis strategy of fuel cell air supply system[D]. Hefei:School of Information Science and Technology, University of Science and Technology of China, 2021.
8 陈凤祥, 陈俊坚, 许思传, 等. 高压燃料电池系统空气供应解耦控制器设计[J]. 同济大学学报: 自然科学版, 2014, 42(7): 1096-1100.
Chen Feng-xiang, Chen Jun-jian, Xu Si-chuan, et al. Deoupling controller design for air supply subsystem of high pressure PEMFC system[J]. Journal of Tongji University (Natural Science), 2014, 42(7): 1096-1100.
9 陈凤祥, 陈兴. 燃料电池系统空气供应内模解耦控制器设计[J]. 同济大学学报: 自然科学版, 2016, 44(12): 1924-1930.
Chen Feng-xiang, Chen Xing. Internal model decoupling controller design for high pressure PEMFC air supply system[J]. Journal of Tongji University (Natural Science), 2016, 44(12): 1924-1930.
10 周苏,胡哲, 谢非. 车用质子交换膜燃料电池空气供应系统自适应解耦控制方法研究[J]. 汽车工程, 2020,42(2): 172-177.
Zhou Su, Hu Zhe, Xie Fei. Study on adaptive decoupling control algorithm for air supply system of vehicle proton exchange membrane fuel cell[J]. Automotive Engineering, 2020, 42(2): 172-177.
[1] Qi-ming CAO,Hai-tao MIN,Wei-yi SUN,Yuan-bin YU,Jun-yu JIANG. Hydrothermal characteristics of proton exchange membrane fuel cell start⁃up at low temperature [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2139-2146.
[2] Ji-zong LIU,Xiao-ping WU,Wei-hua KONG. Parameter configuration of fuel cell hybrid system for tram based on fish swarm optimization algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2004-2013.
[3] Chong ZHANG,Yun-feng HU,Xun GONG,Yao SUN. Design of model⁃free adaptive sliding mode controller for cathode flow of fuel cell [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2085-2095.
[4] Jing DU,Hong-hui ZHAO,Yu-peng WANG,Tian-wei DING,Kai WEI,Kai WANG,Ling-hai HAN. Purge strategy optimization and verification of PEM fuel cell engine based on AMESim simulation model [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2069-2076.
[5] Yun-feng HU,Tong YU,Hui-ce YANG,Yao SUN. Optimal control method of fuel cell start⁃up in low temperature environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2034-2043.
[6] Zi-rong YANG,Yan LI,Xue-feng JI,Fang LIU,Dong HAO. Sensitivity analysis of operating parameters for proton exchange membrane fuel cells [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1971-1981.
[7] Hai-lin KUI,Ze-zhao WANG,Jia-zhen ZHANG,Yang LIU. Transmission ratio and energy management strategy of fuel cell vehicle based on AVL⁃Cruise [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2119-2129.
[8] Yang XIAO,Jie WANG,Meng-jun LIU,Fa-qing YANG,Tian-yao ZHANG,Wei LAN. Improved mechanical model of gas diffusion layer in proton exchange membrane fuel cell [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2147-2155.
[9] Yan LIU,Tian-wei DING,Yu-peng WANG,Jing DU,Hong-hui ZHAO. Thermal management strategy of fuel cell engine based on adaptive control strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2168-2174.
[10] Pei ZHANG,Zhi-wei WANG,Chang-qing DU,Fu-wu YAN,Chi-hua LU. Oxygen excess ratio control method of proton exchange membrane fuel cell air system for vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1996-2003.
[11] Jin-wu GAO,Yi-lin WANG,Hua-yang LIU,Yi-da WANG. Decoupling control for proton exchange membrane fuel cell air supply system based on sliding mode observer [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2156-2167.
[12] Zhen-ning LIU,Ke JIANG,Tao-tao ZHAO,Wen-xuan FAN,Guo-long LU. Development and experimental of high⁃power proton exchange membrane fuel cell test system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2025-2033.
[13] Feng-xiang CHEN,Jun-yu ZHANG,Feng-lai PEI,Ming-tao HOU,Qi-peng LI,Pei-qing LI,Yang-yang WANG,Wei-dong ZHANG. Modeling and selection scheme of proton exchange membrane fuel cell hydrogen supply system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1982-1995.
[14] Heng ZHANG,Zhi-gang ZHAN,Ben CHEN,Pang-chieh SUI,Mu PAN. Anisotropic transport properties of gas diffusion layer based on pore⁃scale model [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2055-2062.
[15] Yao-wang PEI,Feng-xiang CHEN,Zhe HU,Shuang ZHAI,Feng-lai PEI,Wei-dong ZHANG,Jie-ran JIAO. Temperature control of proton exchange membrane fuel cell thermal management system based on adaptive LQR control [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2014-2024.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!