Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (9): 2484-2494.doi: 10.13229/j.cnki.jdxbgxb.20221478

Previous Articles    

Experiment on anchoring performance of spiral stirrup-corrugated pipe grout splicing

Jin-quan ZHAO1,2(),Long ZHOU1,Yong-gang DING1,2(),Rong-ji ZHU3   

  1. 1.College of Civil Engineering,Henan University of Technology,Zhengzhou 450001,China
    2.Henan Key Laboratory of Grain Storage Facility and Safety,Zhengzhou 450001,China
    3.Design Institute,Zhejiang Southeast Space Frame Co. ,Ltd. ,Hangzhou 311209,China
  • Received:2022-11-18 Online:2024-09-01 Published:2024-10-28
  • Contact: Yong-gang DING E-mail:zjq986@haut.edu.cn;cedyg@haut.edu.cn

Abstract:

To provide theoretical data for the spiral stirrup-corrugated pipe grout splicing used in prefabricated structures field, 21 anchorage pull-out specimens were designed and fabricated. The failure mode,load-displacement curves and the influence of different influencing factors on the bond anchorage strength of the specimen were analyzed by the pull-out test.The test results show that the failure modes of the specimens include rebar pull-out, splitting pull-out, rebar fracture and splitting fracture. The bond strength decreases with the increase of anchorage length and rebar diameter.The ultimate bond strength varies nonlinearly with the diameter of the corrugated pipe as the diameter increases. The average ultimate bond strength increases with increasing grout strength and the anchorage length can be further reduced to 5d.In engineering applications,when the rebar diameter is no more than 16 mm,the anchorage length is recommended to be 5d to 7d and the corrugated pipe diameter to be 2.5 to 2.8,and when the grout strength fcu≥80 MPa, the anchorage length is not less than 5d.

Key words: structural engineering, spiral stirrup-corrugated pipe, grout splicing, pull-out test, anchorage performance, anchorage length

CLC Number: 

  • TU375

Fig.1

Geometry and construction of specimen"

Table 1

Mechanical properties of concrete and grout"

强度等级抗压强度/MPa平均值/MPa抗拉强度/MPa平均值/MPa
混凝土C3039.139.5--
39.439.5--
40.239.5--

水泥基

灌浆料

C6070744.615.09
68745.225.09
84745.435.09
C8081.281.77.176.82
8381.76.326.82
8181.76.986.82

Table 2

Mechanical property of rebar"

钢筋直径/mm屈服强度/MPa极限强度/MPa平均屈服强度/MPa平均极限强度/MPa
14431.3576.3433.2568.2
430.1565.2433.2568.2
438.2569.1433.2568.2
16437.9597.2445.4599
450.3600.6445.4599
447.9599.3445.4599

Fig.2

Specimen fabrication process"

Table 3

Parameters of specimens"

试件编号钢筋直径d/mm波纹管直径D/mm孔径比D/d有效锚固长度la/mm灌浆料强度/MPa
14-D40-3d-6014402.863d60
14-D50-3d-6014503.573d60
14-D60-3d-6014604.283d60
14-D40-5d-6014402.865d60
14-D50-5d-6014503.575d60
14-D60-5d-6014604.285d60
14-D40-7d-6014402.867d60
14-D50-7d-6014503.577d60
14-D60-7d-6014604.287d60
16-D40-3d-6016402.503d60
16-D50-3d-6016503.133d60
16-D60-3d-6016603.753d60
16-D40-5d-6016402.505d60
16-D50-5d-6016503.135d60
16-D60-5d-6016603.755d60
16-D40-7d-6016402.507d60
16-D50-7d-6016503.137d60
16-D60-7d-6016603.757d60
16-D40-3d-8016404.283d80
16-D40-5d-8016403.135d80
16-D40-7d-8016403.757d80

Fig.3

Test setup and measuring point location"

Fig.4

Failure form of specimen"

Table 4

Test results of specimens"

试件编号D/d极限荷载Fu/kN极限黏结强度τu/MPa破坏形态
14-D40-3d-602.8664.8435.12P
14-D50-3d-603.5767.4036.55P
14-D60-3d-604.2869.3537.56P
14-D40-5d-602.8686.1628.00PS
14-D50-5d-603.5787.8229.01P
14-D60-5d-604.2892.6630.11B
14-D40-7d-602.8690.9321.11B
14-D50-7d-603.5790.5521.02B
14-D60-7d-604.2891.1021.15B
16-D40-3d-602.5092.3438.31PS
16-D50-3d-603.1393.1238.62PS
16-D60-3d-603.7591.7738.06P
16-D40-5d-602.50105.4226.23PS
16-D50-5d-603.13116.1828.91PS
16-D60-5d-603.75112.4827.98PS
16-D40-7d-602.50118.6121.08BS
16-D50-7d-603.13117.5920.90B
16-D60-7d-603.75118.7821.11B
16-D40-3d-802.5097.5840.41P
16-D40-5d-802.50119.1429.65B
16-D40-7d-802.50118.9021.13B

Fig.5

Load-slip curve"

Fig.6

Bond strength with rebar diameter curve"

Fig.7

Bond strength with grout length curve"

Fig. 8

Bond strength with corrugated pipe diameter curve"

Fig.9

Bond strength with grout strength curve"

Table 5

Comparison of calculated and tested values of bond strength and anchorage length"

试件τu试/MPaτu计/MPaτu计/τu试lacr/mmlau/mm破坏形态
14-D40-3d-6035.1137.481.0637.573.3P,Y
14-D50-3d-6036.5537.931.0436.171.5P,Y
14-D60-3d-6037.5638.831.0334.869.7P,Y
14-D40-5d-6028.0027.760.9937.573.3PS,Y
14-D50-5d-6028.5428.090.9836.171.5P,Y
14-D60-5d-6030.1128.430.9434.869.7B
14-D40-7d-6021.1123.591.1237.573.3B
14-D50-7d-6021.0223.881.1436.171.5B
14-D60-7d-6021.1524.161.1434.869.7B
16-D40-3d-6038.3137.260.9747.494.1PS,Y
16-D50-3d-6039.2437.650.9645.992.2PS,Y
16-D60-3d-6038.0638.050.9944.690.4P,Y
16-D40-5d-6026.2327.591.0547.494.1PS,Y
16-D50-5d-6028.9127.880.9645.992.2PS,Y
16-D60-5d-6027.9928.181.0044.690.4PS,Y
16-D40-7d-6021.0823.451.1147.494.1BS
16-D50-7d-6020.9023.701.1345.992.2B
16-D60-7d-6021.1123.951.1344.690.4B
16-D40-3d-8040.4041.131.0234.677.0P,Y
16-D40-5d-8029.6530.461.0334.677.0B
16-D40-7d-8021.1325.891.2334.677.0B

Table 6

Anchorage length comparison"

公式锚固长度la/mm
14 mm钢筋16 mm钢筋
混凝土结构设计规范196.2230.6
ACI 318-14339.5398.9
山显彬143.0168.0
本文建议取值98.0112.0
1 郭家旭, 胡少伟, 齐浩, 等. 考虑灌浆料龄期的钢筋-金属波纹管浆锚连接锚固性能试验研究[J]. 土木与环境工程学报, 2024, 46(2):108-116.
Guo Jia-xu, Hu Shao-wei, Qi Hao, et al. Experimental study on anchorage property of rebar-metallic bellows slurry anchor connection considering grout age[J]. Journal of Civil and Environmental Engineering, 2024, 46(2):108-116.
2 毛小勇, 高奕昕. 约束浆锚搭接连接高温性能试验研究[J]. 建筑结构学报, 2020, 41(7): 117-123.
Mao Xiao-yong, Gao Yi-xin. Experimental research on connection performance of restraint grouting-anchoring over lap-joint of steel bar subjected to high temperature[J]. Journal of Building Structures, 2020, 41(7): 117-123.
3 李宪军, 邓美林, 何廷树. 装配式建筑套筒灌浆连接系统膨胀约束关键技术研究[J]. 建筑结构, 2021, 51(9): 43-48.
Li Xian-jun, Deng Mei-lin, He Ting-shu. Research on the key technology of restrained expansion of the sleeve grouting connection system in prefabricated building[J]. Building Structure, 2021, 51(9): 43-48.
4 Chen J, Chen X L, Ding F X, et al. Mechanical performance of overlap connections with grout-filled anchor reinforcements in embedded metal corrugated pipe[J]. Archives of Civil and Mechanical Engineering, 2020, 20(4): No.128.
5 Hosseini S J A, Rahman A B A. Efects of spiral confnement to the bond behavior of deformed reinforcement bars subjected to axial tension[J]. Engineering Structures, 2016(112): 1-13.
6 陈云钢, 刘家彬, 郭正兴, 等. 预制混凝土结构波纹管浆锚钢筋锚固性能试验研究[J]. 建筑技术, 2014, 45(1): 65-67.
Chen Yun-gang, Liu Jia-bin, Guo Zheng-xing, et al. Experimental study on grouting connection in bellows for steel bar anchorage of precast concrete strucure[J]. Architecture Technology, 2014, 45(1): 65-67.
7 余琼, 许雪静, 尤高帅. 带肋钢筋与灌浆料黏结性能试验[J]. 哈尔滨工业大学学报, 2017, 49(12): 91-101.
Yu Qiong, Xu Xue-jing, You Gao-shuai. Experimental study on bond behavior for ribbed steel bars and grout[J]. Journal of Harbin Institute of Technology, 2017, 49(12): 91-101.
8 王浩, 柳家为, 石棚, 等. 钢筋-金属波纹管灌浆连接的锚固性能试验研究[J]. 东南大学学报, 2020, 50(2): 215-221.
Wang Hao, Liu Jia-wei, Shi Peng, et al. Experimental study on anchorage performance ofrebar-corrugated metal duct for grout splicing[J]. Journal of Southeeast University, 2020, 50(2): 215-221.
9 陈俊, 肖岩, 尹齐. 预埋波纹套管的钢筋-高强浇筑料黏结锚固性能试验研究[J]. 建筑结构学报, 2015, 36(7): 140-147.
Chen Jun, Xiao Yan, Yin Qi. Bonding strength of rebar anchorage in embedded corrugated sleeve with high strength grout[J]. Journal of Building Structures, 2015, 36(7): 140-147.
10 Chen J, Zhao C H, Ding F X, et al. Mechanical performance of the grouted lapped double reinforcements anchored in embedded corrugated sleeves[J]. Structures, 2020, 28: 1354-1365.
11 姜洪斌, 张海顺, 刘文清, 等. 预制混凝土结构插入式预留孔灌浆钢筋锚固性能[J]. 哈尔滨工业大学学报, 2011, 43(4): 28-31, 36.
Jiang Hong-bin, Zhang Hai-shun, Liu Wen-qing, et al. Experimental study on plug-in filling hole for steel bar anchorage of the PC structure[J]. Journal of Harbin Institute of Technology, 2011, 43(4): 28-31, 36.
12 Zheng Y F, Zhu Z F, Guo Z X, et al. Behavior and splice length of deformed bars lapping in spirally confined grout-filled corrugated duct[J]. Advances in Materials Science and Engineering, 2019, 2019: 1-11.
13 Ma C F, Jiang H B, Wang Z Y. Experimental investigation of precast RC interior beam-column-slab joints with grouted spiral-confined lap connection[J]. Engineering Structures, 2019, 196: No. 109317.
14 Hosseini S J A, Rahman A B A, Osman M H,et al. Bond behavior of spirally confined splice of deformed bars in grout[J]. Construction and Building Materials, 2015, 80: 180-194.
15 葛继平, 夏樟华, 江恒. 灌浆波纹管装配式桥墩双向拟静力试验[J].中国公路学报, 2018, 31(12): 221-230, 266.
Ge Ji-ping, Xia Zhang-hua, Jiang Heng. Biaxial quasi-static eperiment of precast segmengtal bridge piers with grouting corrugated pipe connection[J]. China Journal of Highway and Transport, 2018, 31(12): 221-230, 266.
16 陈昕, 刘明, 姚大鹏, 等. 考虑波纹管组合钢筋浆锚搭接长度的装配式剪力墙拟静力试验[J]. 大连理工大学学报, 2016, 56(6): 616-623.
Chen Xin, Liu Ming, Yao Da-peng, et al. Quasi-static experiments on lap length of precast shear walls assembled with reinforcement grouting anchor connection and corrugated pipes[J]. Journal of Dalian University of Technology, 2016, 56(6): 616-623.
17 陈昕, 李家旭, 杨永生, 等. 预埋波纹管单排钢筋浆锚连接的预制剪力墙抗震性能研究[J]. 沈阳建筑大学学报, 2021, 37(5): 814-822.
Chen Xin, Li Jia-xu, Yang Yong-sheng, et al. Research on seismic performance of precast shear wall connected by embedded corrugated pipe and single row of steel bars[J]. Journal of Shenyang Jianzhu University, 2021, 37(5): 814-822.
18 .普通混凝土力学性能试验方法标准 [S].
19 .水泥基灌浆材料应用技术规范 [S].
20 余琼, 孙佳秋, 袁炜航. 带肋钢筋与套筒约束灌浆料黏结性能试验[J]. 哈尔滨工业大学学报, 2018, 50(12): 98-106.
Yu Qiong, Sun Jia-qiu, Yuan Wei-hang. Experimental study on bond behavior between ribbed steel bars and sleeve constrained grouting matrrial[J]. Journal of Harbin Institute of Technology, 2018, 50(12): 98-106.
21 徐有邻, 沈文都, 汪洪. 钢筋砼粘结锚固性能的试验研究[J]. 建筑结构学报, 1994(3): 26-37.
Xu You-lin, Shen Wen-du, Wang Hong. An experimental study of bond-anchorage properties of bars in concrete[J]. Journal of Building Structures, 1994(3): 26-37.
22 . 混凝土结构设计规范 [S].
23 ACI318—14. Building code requirements for structural concrete [S].
24 山显彬. 变形钢筋与自密实混凝土之间粘结锚固性能试验研究[D]. 哈尔滨: 哈尔滨工业大学土木工程学院, 2008.
Shan Xian-bin. Experimental research on bonding prop-erties between deformed bars and self-compacting concrete[D]. Harbin: School of Civil Engineering, Harbin Institute of Technology, 2008.
[1] Wei-song YANG,An ZHANG,Wei-xiao XU,Hai-sheng LI,Ke DU. Seismic performance of stiffness enhanced metal coupling beam damper [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2469-2483.
[2] Qi-wu YAN,Zhong-liang ZOU. Hybrid algorithm for seismic energy-dissipated structures based on optimal placement of dampers [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2267-2274.
[3] Feng-guo JIANG,Yu-ming ZHOU,Li-li BAI,Shuang LIANG. Improved krill algorithm and its application in structural optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2256-2266.
[4] Guang-tai ZHANG,Cheng-xiao ZHOU,Shi-tuo LIU. Restoring force model of fiber lithium slag concrete column in saline soil environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1944-1957.
[5] Yan-song DIAO,Yi-jian REN,Yuan-qiang YANG,Ling-yun ZHAO,Xiu-li LIU,Yun LIU. Experimental on seismic performance of replaceable splicing steel beam-column joints with friction energy dissipation components [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1643-1656.
[6] Xue-ping FAN,Yue-fei LIU. Bridge extreme stress dynamic prediction based on improved Gaussian mixed particle filter new algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1038-1044.
[7] Yi-fan LIU,Zhi-wei MIAO,Chen SHEN,Xiang-dong GENG. Evaluation of mechanical properties of non-uniform corroded rebars based on Monte Carlo method [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1007-1015.
[8] Xue-ping FAN,Heng ZHOU,Yue-fei LIU. Time⁃variant reliability analysis of bridge members based on Gaussian Copula⁃Bayesian dynamic models [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 485-493.
[9] Xue-ping FAN,Heng ZHOU,Yue-fei LIU. Multi⁃process Bayesian dynamic combinatorial prediction of time⁃variant reliability for bridges [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2332-2338.
[10] Er-gang XIONG,Zhong-wen GONG,Jia-ming LUO,Tuan-jie FAN. Experiment on cracks in reinforced concrete beams based on digital image correlation technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1094-1104.
[11] Xiao-dong WANG,Ning-jing LI,Qiang LI. Experimental on crushing of concrete beams by high⁃voltage pulse discharge [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 496-504.
[12] Ya-chuan KUANG,Li-bin CHEN,Chao-ju LI,Yu-hao HE. Analysis of mechanical properties of stud shear connectors [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 538-546.
[13] Li-zhao DAI,Liang ZHOU,Xiao-wen YANG,Lei WANG. Meso-scale numerical simulation of interfacial bond behavior of corroded RC beams based on connector element [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(10): 2886-2896.
[14] Yun-peng CHU,Xin-hui SUN,Ming LI,Yong YAO,Han-jie HUANG. Wind pressures on a circular hyperbolic⁃paraboloid roof subjected to a simulated downburst [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1826-1833.
[15] Yong YAO,Liu-feng SU,Ming LI,Yun-peng CHU,Han-jie HUANG. Wind load characteristics of double⁃sided spherical shell roof under downburst [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 615-625.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!