Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (7): 1944-1957.doi: 10.13229/j.cnki.jdxbgxb.20221118

Previous Articles    

Restoring force model of fiber lithium slag concrete column in saline soil environment

Guang-tai ZHANG1,2(),Cheng-xiao ZHOU1,Shi-tuo LIU3   

  1. 1.School of Engineering,Xinjiang University,Urumqi 830017,China
    2.Key Laboratory of Building Structure and Earthquake Resistance,Xinjiang University,Urumqi 830017,China
    3.Chongqing Wanzhou District Municipal Facilities Maintenance Management Center,Chongqing 404100,China
  • Received:2022-08-30 Online:2024-07-01 Published:2024-08-05

Abstract:

In order to study the seismic behavior of polypropylene fiber lithium slag concrete (PLiC) columns in saline soil environment, low-period cyclic load tests of six columns were conducted. On account of the test results, the four-polyline skeleton curve was obtained. Based on the research of many scholars, considering the role of additives, obtaining the calculation formula of correction coefficient of each characteristic point by regression analysis. Introducing stiffness degradation index μ and damage factor D to combine the effects of erosion time, using the hysteretic rule applicable to the attenuation of bearing capacity and stiffness degradation of PLiC column to establish the force-displacement restoring force model of PLiC column under saline soil environment. The results showed that polypropylene fiber and lithium slag could improve durability and the mechanical properties such as ultimate bearing capacity, ductility of concrete columns. The skeleton curve and hysteresis curve obtained from the established restoring force model are in good agreement with the test results, which can provide a reference for the nonlinear analysis of seismic performance of polypropylene fiber lithium slag concrete columns in saline soil environment.

Key words: structural engineering, saline soil environment, polypropylene fiber lithium slag concrete, hysteresis rules, restoring force model

CLC Number: 

  • TU375.3

Table 1

Specimen parameters"

试件编号

高度/

mm

聚丙烯纤维掺量/(kg?m-3)

锂碴

替代率/%

浸泡

天数/d

RC-01200000
RC-012001.2200
RC-9012000090
PLiC-9012001.22090
RC-180120000180
PLiC-18012001.220180

Fig.1

Plan of test specimen"

Table 2

Physical properties of polypropylene fiber"

纤维类型

直径/

μm

密度/

(g·cm-3

长度/

mm

弹性模量/

GPa

抗拉强度/

MPa

聚丙烯纤维330.9119>3.5530

Table 3

Chemical composition of lithium slag"

SiO2Al2O3SO3CaOFe2O3
54.3919.838.307.981.40
Li2ONa2OMgOK2O
0.770.260.240.14

Table 4

Mechanical properties of reinforcement"

钢筋级别

直径/

mm

面积/

mm2

屈服强度/

MPa

抗拉强度/

MPa

HPB300628.26390.99591.34
HRB40016201.06431.22632.16

Table 5

proportions of concrete mix"

试块种类纤维掺量锂渣水泥石子减水剂
PC00313.21360657118.12.6
PLiC1.262.7250.81360657118.12.6

Fig.2

Basic mechanical properties of concrete"

Fig.3

Loading device diagram"

Fig.4

Loading system"

Fig.5

Sample diagram after loading"

Fig.6

Hysteretic curve of specimen"

Fig.7

Specimen skeleton curve"

Fig.8

Stress distribution of column section under limit state"

Fig.9

Four broken-line skeleton curve"

Table 6

Load characteristic value is compared with calculated value"

试件编号试验值/kN计算值/kN(试验值-计算值)/试验值
PcrPyPmPuPcrPyPmPu开裂屈服峰值极限
RC-035.182.2994.280.328.6883.792.1678.340.18-0.0170.0220.024
PLiC-038.977.4288.775.432.572.4589.36760.160.0640.0070.008

Table 7

Displacement characteristic value is compared with calculated value"

试件编号试验值/mm计算值/mm(试验值-计算值)/试验值
?cr?y?m?u?cr?y?m?u开裂屈服峰值极限
RC-02.758.8519.330.337.831528-0.090.120.220.076
PLiC-05.57.011130.64.27.8314.3330.24-0.120.30.078

Fig.10

Comparison between skeleton curve model andexperimental results without erosion"

Fig.11

Characteristic value of displacement changes with time"

Fig.12

Change of load characteristic value with time"

Table 8

Calculation formula of load characteristic value damage factor"

Dp (RC柱)Dp (PLiC柱)
Pcr1+4×10-3t-1.83×10-5t21+8.51×10-3t-4.52×10-5t2
Py1-3.73×10-3t+2.14×10-5t21+1.01×10-3t-3.86×10-6t2
Pm1-4.11×10-3t-1.83×10-5t21+1.14×10-3t-4.7×10-6t2
Pu1+4×10-3t-1.83×10-5t21+1.04×10-3t-3.01×10-6t2

Table 9

Calculation formula of displacement eigenvalue damage factor"

D? (RC柱)D? (PLiC柱)
?cr11
?y1+9.85×10-3t-5.7×10-5t21+1.36×10-2t-6.37×10-5t2
?m1+2.92×10-3t+9.3×10-6t21+1.49×10-2t+7.13×10-5t2
?u1+4.11×10-3t-1.83×10-5t21+1.17×10-3t-1.74×10-6t2

Fig.13

Comparison between skeleton curve model and experimental results under erosion condition"

Fig.14

Hysteresis rules"

Fig.15

Comparison of testing and calculating hysteretic curves"

1 孙志诚, 郭迅.钢筋混凝土匹配度对框架柱破坏模式影响试验研究[J].土木工程学报,2020,53():80-86.
Sun Zhi-cheng, Guo Xun. Experimental study on influence of reinforced concrete matching degree on failure mode of frame columns[J]. China Civil Engineering Journal,2020,53(Sup.2):80-86.
2 邵旭东,樊伟,黄政宇.超高性能混凝土在结构中的应用[J].土木工程学报,2021,54(1):1-13.
Shao Xu-dong, Fan Wei, Huang Zheng-yu. Application of ultra-high-performance concrete in engineering structures[J]. China Civil Engineering Journal,2021,54(1):1-13.
3 Jamshaid H, Mishra R, Militký J, et al. Interfacial performance and durability of textile reinforced concrete[J]. The Journal of The Textile Institute, 2018, 109(7): 879-890.
4 Jamshaid H, Mishra R, Militky J, et al. Mechanical, thermal and interfacial properties of green composites from basalt and hybrid woven fabrics[J]. Fibers and Polymers, 2016, 17(10): 1675-1686.
5 Liu Y Z, Wang L, Cao K, et al. Review on the durability of polypropylene fibre-reinforced concrete[J]. Advances in Civil Engineering, 2021, 13:No.6652077.
6 Lothenbach B, Scrivener K, Hooton R D. Supplementary cementitious materials[J]. Cement and Concrete Research, 2011, 41(12): 1244-1256.
7 He Z, Li L, Du S. Mechanical properties, drying shrinkage, and creep of concrete containing lithium slag[J]. Construction and Building Materials, 2017, 147: 296-304.
8 过镇海, 时旭东. 钢筋混凝土原理和分析[M].北京: 清华大学出版社, 2003.
9 韦翠梅,徐礼华,黄乐,等.钢-聚丙烯混杂纤维混凝土柱恢复力模型试验研究[J].土木工程学报,2014,47():227-234.
Wei Cui-mei, Xu Li-hua, Huang Le, et al. Experimental study on restoring force models for steel-polypropylene hybrid fiber reinforced concrete columns[J]. China Civil Engineering Journal,2014,47(Sup.2):227-234.
10 张建伟,李晨,李翔宇,等.HRB600级钢筋高强混凝土柱抗震性能试验研究[J].土木工程学报,2019,52(8):6-17.
Zhang Jian-wei, Li Chen, Li Xiang-yu, et al. Experimental study on seismic behavior of high-strength concrete columns with HRB600 steel bars[J]. China Civil Engineering Journal,2019,52(8):6-17.
11 Sheng P, Zhou X, Xiang G Z. A restoring force model for CFRP seismic-damaged RACFST columns: theoretical, experimental, and simulation analysis[J]. Structures, 2022, 40:273-283.
12 Yang T, Wang S, Liu W. Restoring-force model of modified RAC columns with silica fume and hybrid fiber[J]. Journal of Central South University, 2017, 24(11): 2674-2684.
13 李一,张广泰,田虎学,等.锂渣聚丙烯纤维混凝土基本力学性能试验[J].河南科技大学学报:自然科学版,2016,37(4):60-65.
Li Yi, Zhang Guang-tai, Tian Hu-xue, et al. Test on basic mechanical properties of lithium slag polypropylene fiber concrete[J]. Journal of Henan University of Science and Technology(Natural Science), 2016,37(4):60-65.
14 张广泰,李瑞祥,令芳,等.聚丙烯纤维锂渣混凝土与HRB500钢筋的黏结特性[J].混凝土,2022(4):1-7.
Zhang Guang-tai, Li Rui-xiang, Ling Fang,et al. Bonding characteristics between polypropylene fiber lithium slag concrete and HRB500 reinforcement[J]. Concrete,2022(4):1-7.
15 . 岩土工程勘察规范 [S].
16 Kang T H. Dynamic tests and modeling of RC and PT slab-column connections[C]∥The 100 th Anniversary Earthquake Conference, San Francisco, USA 2006: 5360-5369.
17 郑山锁,郑跃,董立国,等.酸雨环境下锈蚀RC剪力墙恢复力模型研究[J].工程力学,2019,36(10):75-85.
Zheng San-suo, Zheng Yue, Dong Li-guo, et al. A restoring force model of RC shear walls in a simulated acid environment[J]. Engineering Mechanics,2019,36(10):75-85.
18 邹银生,王选民,刘英魁. 薄壁杆件截面剪应力分布不均匀系数的计算方法[C]∥ 第二届全国结构工程学术会议论文集(上),中国,长沙,1993:222-227.
Zou Yin-sheng, Wang Xuan-min, Liu Ying-kui. Calculation method of uneven coefficient of shear stress distribution in section of thin-walled member[C]∥ Proceedings of the Second National Conference on Structural Engineering (Part I),Changsha,China,1993:222-227.
19 Zhang J, Zhao Y, Li X, et al. Experimental study on seismic performance of recycled aggregate concrete shear wall with high-strength steel bars[J].Structure, 2021, 33: 1457-1472.
20 Liu K, Yan J, Alam M S, et al. Seismic fragility analysis of deteriorating recycled aggregate concrete bridge columns subjected to freeze-thaw cycles[J]. Engineering Structures, 2019, 187:1-15.
21 . 混凝土结构设计规范 [S].
22 吴小勇.钢筋钢丝网砂浆加固混凝土柱的轴压、偏压及抗震滞回性能试验研究[D].汕头:汕头大学工学院, 2011.
Wu Xiao-yong. Experimental study on behavior of concrete columns strengthened by ferrocement including steel bars under axial compression, rccentric and seismic load[D]. Santou:College of Engineering, Santou University, 2011.
23 Youssf O, Elgawady M A, Mills J E. Displacement and plastic hinge length of FRP-confined circular reinforced concrete columns[J]. Engineering Structures, 2015, 101:465-476.
24 Priestley M J N, Kowalsky M J. Aspects of drift and ductility capacity of rectangular cantilever structural walls[J]. Bulletin of the New Zealand Society for Earthquake Engineering, 1998, 31(2): 73-85.
25 王铁成.混凝土结构设计原理[M].北京:中国建筑工业出版社,2012.
26 Park R, Paulay T. Reinforced Concrete Structures[M]. Hoboken:John Wiley & Sons, 1991.
27 宋文. FRP增强和修复加固大尺寸RC方柱抗震性能研究[D].北京: 清华大学土木水利学院,2019.
Saravath Suong. Seismic performance of strengthened and repaired large scale square section RC columu using FRP[D]. Beijing: School of Civil Engineering,Tsinghua University,2019.
28 Ozcan O, Binici B, Ozcebe G. Seismic strengthening of rectangular reinforced concrete columns using fiber reinforced polymers[J]. Engineering Structures, 2010, 32(4): 964-973.
29 Ozcan O, Binici B, Canbay E, et al. Repair and strengthening of reinforced concrete columns with CFRPs[J]. Journal of Reinforced Plastics and Composites, 2010, 29(22): 3411-3424.
30 Li B, Harries K A. Seismic performance assessment of flexure-dominate FRP-confined RC columns using plastic rotation angle[J]. Engineering Structures, 2018, 172:453-471.
31 Yuan F, Wu Y F, Li C Q. Modelling plastic hinge of FRP-confined RC columns[J]. Engineering Structures, 2017, 131:651-668.
32 Paulay T, Priestley M J N. Seismic design of reinforced concrete and masonry buildings[M]. Hoboken:Wiley, 1992.
33 李冬,金浏,杜修力,等.混凝土Ⅰ-型细观断裂模型及其在材料层次尺寸效应中的应用[J].土木工程学报,2020,53(2):48-61.
Li Dong, Jin Liu, Du Xiu-li, et al. Concrete mode-I mesoscale fracture model and its application in analysis of size effect at material level[J]. China Civil Engineering Journal,2020,53(2):48-61.
34 姚谦峰, 常鹏. 工程结构抗震分析[M]. 北京:北京交通大学出版社,2012.
35 水中和,魏小胜,王栋民.现代混凝土科学技术[M].北京:科学出版社,2014.
36 史才军.水泥基材料中氯离子的传输及相互作用[M].北京:化学工业出版社,2021.
37 逄锦伟.冻融循环作用下锂渣混凝土抗硫酸盐侵蚀研究[J].硅酸盐通报,2019,38(1):304-309.
Pang Jin-wei. Study on the sulfate corrosion resistance of concrete with lithium slag under the freezing and thawing cycles[J]. Bulletin of the Chinese Ceramic Society,2019,38(1):304-309.
38 张广泰, 董海蛟, 温勇. 冻融循环下锂渣粉对混凝土渗透性的影响[J]. 混凝土与水泥制品, 2015(3):83-86.
Zhang Guang-tai, Dong Hai-jiao, Wen Yong. Effects of lithium slag powder on permeability of concrete under freeze-thaw cycles[J]. China Concrete and Cement Products, 2015(3):83-86.
39 张喜娥.锂渣对混凝土徐变的影响[J]. 硅酸盐通报,2018,37(3):856-860, 867.
Zhang Xi-e. Effect of lithium slag on creep of concrete[J]. Bulletin of the Chinese Ceramic Society,2018,37(3):856-860, 867.
[1] Yan-song DIAO,Yi-jian REN,Yuan-qiang YANG,Ling-yun ZHAO,Xiu-li LIU,Yun LIU. Experimental on seismic performance of replaceable splicing steel beam-column joints with friction energy dissipation components [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1643-1656.
[2] Xue-ping FAN,Yue-fei LIU. Bridge extreme stress dynamic prediction based on improved Gaussian mixed particle filter new algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1038-1044.
[3] Yi-fan LIU,Zhi-wei MIAO,Chen SHEN,Xiang-dong GENG. Evaluation of mechanical properties of non-uniform corroded rebars based on Monte Carlo method [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1007-1015.
[4] Xue-ping FAN,Heng ZHOU,Yue-fei LIU. Time⁃variant reliability analysis of bridge members based on Gaussian Copula⁃Bayesian dynamic models [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 485-493.
[5] Xue-ping FAN,Heng ZHOU,Yue-fei LIU. Multi⁃process Bayesian dynamic combinatorial prediction of time⁃variant reliability for bridges [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2332-2338.
[6] Er-gang XIONG,Zhong-wen GONG,Jia-ming LUO,Tuan-jie FAN. Experiment on cracks in reinforced concrete beams based on digital image correlation technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1094-1104.
[7] Xiao-dong WANG,Ning-jing LI,Qiang LI. Experimental on crushing of concrete beams by high⁃voltage pulse discharge [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 496-504.
[8] Ya-chuan KUANG,Li-bin CHEN,Chao-ju LI,Yu-hao HE. Analysis of mechanical properties of stud shear connectors [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 538-546.
[9] Li-zhao DAI,Liang ZHOU,Xiao-wen YANG,Lei WANG. Meso-scale numerical simulation of interfacial bond behavior of corroded RC beams based on connector element [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(10): 2886-2896.
[10] Yun-peng CHU,Xin-hui SUN,Ming LI,Yong YAO,Han-jie HUANG. Wind pressures on a circular hyperbolic⁃paraboloid roof subjected to a simulated downburst [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1826-1833.
[11] Yong YAO,Liu-feng SU,Ming LI,Yun-peng CHU,Han-jie HUANG. Wind load characteristics of double⁃sided spherical shell roof under downburst [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 615-625.
[12] Ya-chuan KUANG,Zhe-xuan SONG,Yin-hu LIU,Xiao-fei MO,Liang-ming FU,Shi-quan LUO. Experiment on mechanical properties of new type assembled double-cabin utility tunnel [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 596-603.
[13] Yi-hong WANG,Qiao-luo TIAN,Guan-qi LAN,Sheng-fa YAO,Jian-xiong ZHANG,Xi LIU. Experimental research on the mechanical properties of concrete column reinforced with 630 MPa high⁃strength steel under large eccentric loading [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2626-2635.
[14] Yong-zhi GONG,Jin-hua KUANG,Fu-long KE,Quan ZHOU,Xiao-yong LUO. Experiment on seismic behavior of assembled shear wall joints connected by ultra high performance concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2367-2375.
[15] Xue-ping FAN,Guang-hong YANG,Zhi-peng SHANG,Xiao-xiong ZHAO,Qing-kai XIAO,Yue-fei LIU. Dynamic reliability fusion prediction of long-span bridge girder considering structural serviceability [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 144-153.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!