Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (10): 3064-3076.doi: 10.13229/j.cnki.jdxbgxb.20221593

Previous Articles    

Energy management strategy for fuel cell trams combining online and offline control

Feng-yang GAO(),Ya-xin QIANG,Zhi-shan GAO,Hao XU,Zhi-long SHI   

  1. School of Automation and Electrical Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China
  • Received:2022-12-13 Online:2024-10-01 Published:2024-11-22

Abstract:

The dynamic programming in the global energy management strategy of fuel cell/lithium battery/supercapacitor hybrid trams is effective and can improve the fuel economy, but it requires a priori operating conditions, is computationally intensive, time-consuming, and cannot be controlled online, and an improvement strategy is proposed to address the above problems. Firstly, the Markov power state transfer matrix is established based on the historical tram operation data to predict the tram operation conditions; secondly, the fuel cell power data in the tram is updated by using the sliding window with a large number of continuous and infinitely fast observation data to speed up the iteration of the dynamic planning algorithm, and the minimum hydrogen consumption is used as the objective function to obtain the optimal control by solving the forward search in the inverse direction. Finally, the proposed strategy is compared with the state machine strategy and the traditional dynamic planning strategy. The results show that the proposed strategy significantly reduces the operation time compared with the traditional dynamic planning, effectively reduces the number and amplitude of fuel cell high-current discharges, and improves the durability of the fuel cell; the reasonable power distribution of the main and auxiliary power sources during the real-time operation of the tram improves the fuel economy and average efficiency of the hybrid system.

Key words: hybrid tram, global optimization, working condition prediction, energy management strategy

CLC Number: 

  • TM91

Fig.1

Topological structure of fuel cell hybrid tram"

Table 1

Main technical parameters of tram"

参 数数 值
驱动电机(8个)/kW8×110
变流器/VDC750(500~900)
轴重/t12
列车自重/t47
列车车体长度/mm31 075
续驶里程/km>40
最高运行速度/(km·h-160

Fig.2

Fuel cell model"

Fig.3

Polarization test curve of fuel cell monomer"

Fig.4

Fuel cell model accuracy test"

Fig.5

Lithium battery RINT equivalent circuit"

Fig.6

Simulation curve of lithium battery dischargecharacteristics"

Fig.7

Lithium battery model accuracy test"

Fig.8

Supercapacitor model"

Fig.9

Supercapacitor model accuracy test"

Fig.10

Speed-demand power probability distribution"

Fig.11

Next moment demand power state transfer matrix"

Fig.12

Work condition prediction result"

Fig.13

Slide window update graph"

Fig.14

Double-loop control block diagram"

Table 2

Simulation parameters of on-board composite power supply"

参数数 值
燃料电池单体数量/个735
燃料电池堆电压/V540
燃料电池堆最大储氢量/kg14
锂电池组串并联数目114串2并
锂电池组额定电压/V331
锂电池组最大放电电流/A120
超级电容组串并联数量/个11串3并
超级电容组额定电压/V750
超级电容组最大电流/A98(持续);1 900(1 s)

Fig.15

Comparison of power allocation under three strategies"

Fig.16

Comparison of SOC of lithium battery and super capacitor under three strategies"

Fig.17

Comparison of hydrogen consumption and fuel cell current under three strategies"

Table 3

Simulation results comparison"

对比指标状态机传统动态规划本文策略
系统氢耗量/kg2.872.652.29
系统效率/%78.2583.6189.72
锂电池SOC始末状态差值/%-4.83.50
超级电容SOC最大偏移率/%31.610.59.4
燃料电池峰值电流/A100.580.740.3
1 刘继宗,吴小平,孔维华.基于鱼群优化算法的有轨电车用燃料电池混合动力系统参数配置[J].吉林大学学报:工学版,2022,52(9):2004-2013.
Liu Ji-zong, Wu Xiao-ping, Kong Wei-hua. Parameter configuration of fuel cell hybrid power system for trams based on fish swarm optimization algorithm[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(9): 2004-2013.
2 王玲,李欣然,马亚辉,等. 燃料电池发电系统的机电动态模型[J]. 中国电机工程学报, 2011, 31(22): 40-47.
Wang Ling, Li Xin-ran, Ma Ya-hui, et al. Dynamic model of fuel cell power generating system[J]. Proceedings of the CSEE, 2011, 31(22): 40-47.
3 Wang Y, Yang Z, Lin F, et al. A hybrid energy management strategy based on line prediction and condition analysis for the hybrid energy storage system of tram[J]. IEEE Transactions on Industry Applications, 2022, 56(2): 1793-1803.
4 张晗,杨继斌,张继业,等. 燃料电池有轨电车能量管理与速度曲线协同优化[J].机械工程学报,2022,58(10):169-179.
Zhang Han, Yang Ji-bin, Zhang Ji-ye, et al. Cooperative optimization for fuel cell tram energy management and speed profile[J]. Journal of Mechanical Engineering, 2022, 58(10): 169-179.
5 Li Q, Chen W R, Liu Z X, et al. Net power control based on linear matrix inequality for proton exchange membrane fuel cell system[J]. IEEE Transactions on Energy Conversion, 2014, 29(1): 1-8.
6 Li Q, Wang T H, Dai C H, et al. Power management strategy based on adaptive droop control for a fuel cell battery supercapacitor hybrid tramway[J]. IEEE Transactions on Vehicular Technology, 2018,67(7): 5658-5670.
7 陈维荣,燕雨,李奇. 基于状态机的燃料电池混合动力系统控制策略[J]. 西南交通大学学报, 2019, 54(4): 663-670.
Chen Wei-rong, Yan Yu, Li Qi. Control strategy based on state machine for fuel cell hybrid power system[J]. Journal of Southwest Jiaotong University, 2019,54(4):663-670.
8 Torreglosa J P, Jurado F, García P, et al. Application of cascade and fuzzy logic based control in a model of a fuel-cell hybrid tramway[J]. Engineering Applications of Artificial Intelligence, 2011, 24(1):1-11.
9 高锋阳,张浩然,王文祥,等.氢燃料电池有轨电车混合储能系统的节能运行优化[J].电工技术学报,2022,37(3):686-696.
Gao Feng-yang, Zhang Hao-ran, Wang Wen-xiang, et al. Energy saving operation optimization of hybrid energy storage system for hydrogen fuel cell tram[J]. Transactions of China Electrotechnical Society, 2022, 37(3): 686-696.
10 张国瑞,李奇,韩莹,等.基于运行模式和动态混合度的燃料电池混合动力有轨电车等效氢耗最小化能量管理方法研究[J].中国电机工程学报,2018,38(23):6905-6914, 7124.
Zhang Guo-rui, Li Qi, Han Ying, et al. Study on equivalent consumption minimization strategy based on operation mode and ddoh for fuel cell hybrid tramway[J]. Proceedings of the CSEE, 2018, 38(23): 6905-6914, 7124.
11 Li Q, Su B, Pu Y, et al. A state machine control based on equivalent consumption minimization for fuel cell/supercapacitor hybrid tramway[J]. IEEE Transactions on Transportation Electrification, 2019, 5(2): 552-563.
12 申彩英,夏超英. 基于改进型动态规划算法的串联混合动力汽车控制策略[J]. 控制理论与应用, 2011, 28(3): 427-432.
Shen Cai-ying, Xia Chao-ying. Control strategy of series hybrid electric vehicle based on improved dynamic programming[J]. Control Theory & Applications, 2011, 28(3): 427-432.
13 左义和,项昌乐,闫清东,等. 基于动态规划算法的混联混合动力汽车控制策略[J]. 吉林大学学报:工学版, 2011, 41(4): 898-903.
Zuo Yi-he, Xiang Chang-le, Yan Qing-dong, et al. Parallel-serial hybrid electrical vehicle control strategy based on dynamic programming algorithm[J]. Journal of Jilin University(Engineering and Technology Edition), 2011,41(4): 898-903.
14 陈维荣,胡斌彬,李奇,等. 基于动态规划的混合动力有轨电车能量管理方法[J]. 西南交通大学学报, 2020, 55(5): 903-911.
Chen Wei-rong, Hu Bin-bin, Li Qi, et al. Energy management method for hybrid electric tram based on dynamic programming algorithm[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 903-911.
15 林泓涛,姜久春,贾志东,等. 权重系数自适应调整的混合储能系统多目标模型预测控制[J]. 中国电机工程学报, 2018, 38(18): 5538-5547.
Lin Hong-tao, Jiang Jiu-chun, Jia Zhi-dong, et al. Multi objective model predictive control for hybrid energy storage system with adaptive adjustment of weight coefficients[J]. Proceedings of the CSEE, 2018, 38(18): 5538-5547.
16 王哲,谢怡,孙维,等. 燃料电池客车动力系统建模与能量管理策略研究[J]. 同济大学学报:自然科学版, 2019, 47(1): 97-103, 123.
Wang Zhe, Xie Yi, Sun Wei, et al. Research on modeling of fuel cell bus power system and energy management strategy[J]. Journal of Tongji University (Natural Science Edition), 2019, 47(1): 97-103, 123.
17 陈维荣,时方力,戴朝华,等. 基于动态混合度的储能式有轨电车能量管理策略[J]. 西南交通大学学报, 2020, 55(2): 409-416.
Chen Wei-rong, Shi Fang-li, Dai Chao-hua, et al. Energy management strategy of hybrid tram based on dynamic degree of hybrid[J]. Journal of Southwest Jiaoton University, 2020, 55(2): 409-416.
18 Hu Y, Yurkovich S. Linear parameter varying battery model identification using subspace methods[J]. Journal of Power Sources, 2011, 196(5): 2913-2923.
19 Zubieta L, Bonert R.Characterization of double-layer capacitors for power electronics applications[J]. IEEE Transactions on Industry Applications, 2000, 36(1):199-205.
20 Miniguano H, Barrado A, Lázaro A. Li-ion battery and supercapacitor modeling for electric vehicles based on pulse-pseudo random binary sequence[J]. IEEE Transactions on Vehicular Technology, 2021, 70(11): 11378-11389.
21 席利贺,张欣,耿聪,等. 基于动态规划算法的增程式电动汽车能量管理策略优化[J]. 交通运输工程学报, 2018, 18(3): 148-156.
Xi Li-he, Zhang Xin, Geng Cong,et al.Energy management strategy optimization of extended-range electric vehicle based on dynamic programming[J]. Journal of Traffic and Trasportation Engineering, 2018, 18(3): 148-156.
22 何俊强,师长立,韦统振. 基于马尔科夫链的自适应储能需求功率预测模型[J]. 电工技术学报, 2021, 36(): 563-571.
He Jun-qiang, Shi Chang-li, Wei Tong-zhen. Adaptive power demand prediction model of energy storage based on markov chain[J]. Transactions of China Electrotechnical Society, 2021, 36(Sup.2): 563-571.
23 Zhang M, Shi S M, Lin N, et al. High-efficiency driving cycle generation using a markov chain evolution algorithm[J].IEEE Transactions on Vehicular Technology,2019, 68(2): 1288-1301.
24 Shakil S, Billings J C, Keilholz S D.Parametric dependencies of sliding window correlation[J]. IEEE Transactions on Biomedical Engineering, 2018, 65(2): 254-263.
[1] Yu-hai WANG,Xiao-zhi LI,Xing-kun LI. Predictive energy saving algorithm for hybrid electric truck under high-speed condition [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2121-2129.
[2] Feng-xiang CHEN,Qi WU,Yuan-song LI,Tian-de MO,Yu LI,Li-ping HUANG,Jian-hong SU,Wei-dong ZHANG. Matching,simulation and optimization for 2.5 ton fuel cell/battery hybrid forklift [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2044-2054.
[3] Zhe WANG,Yi XIE,Peng-fei ZANG,Yao WANG. Energy management strategy of fuel cell bus based on Pontryagin′s minimum principle [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 36-43.
[4] XI Li-he,ZHANG Xin,SUN Chuan-yang,WANG Ze-xing,JIANG Tao. Adaptive energy management strategy for extended range electric vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1636-1644.
[5] SUN Liang, XU Hai-lang, GE Hong-wei. Novel global convergence stochastic particle swarm optimizers [J]. 吉林大学学报(工学版), 2017, 47(2): 615-623.
[6] XIA Chao-ying, DU Zhi-ming. Simulation analysis on energy optimization strategy for Toyota PRIUD hybrid electric vehicle [J]. 吉林大学学报(工学版), 2017, 47(2): 373-383.
[7] SONG Kang, CHEN Xiao-kai, LIN Yi. Robust design of powertrain mounting system [J]. 吉林大学学报(工学版), 2016, 46(3): 692-699.
[8] QIN Da-tong, YANG Guan-long, HU Ming-hui, LIU Yong-gang, LIN Yu-pei. Energy management strategy of plug-in hybridelectric system based on driving intention [J]. 吉林大学学报(工学版), 2015, 45(6): 1743-1750.
[9] TIAN Ye, LIU Da-You, QI Hong. Hybrid optimization algorithm based on improved simplex search and differential evolution [J]. 吉林大学学报(工学版), 2011, 41(02): 430-0434.
[10] JIN Di1,2,LIU Dayou1,2,HUANG Jing1,2,HE Dongxiao1,2,WANG Xinhua1,2 . Global optimization algorithm based on immune algorithm and
evolutionary diffusion optimization
[J]. 吉林大学学报(工学版), 2009, 39(01): 124-130.
[11] ZHAO Wen-hong1, WANG Wei1,2, WANG Yu-ping2, HAO Ming-qiang3 . ZHAO Wen-hong1, WANG Wei1,2, WANG Yu-ping2, HAO Ming-qiang3 [J]. 吉林大学学报(工学版), 2008, 38(04): 865-870.
[12] ZHANG Xiao-wei1,LIU San-yang1,CHI Xiao-ni2 . Efficient interval-genetic algorithm for multipeak global optimization [J]. 吉林大学学报(工学版), 2008, 38(04): 876-879.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!