Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (9): 2044-2054.doi: 10.13229/j.cnki.jdxbgxb20220215

Previous Articles    

Matching,simulation and optimization for 2.5 ton fuel cell/battery hybrid forklift

Feng-xiang CHEN1(),Qi WU1,Yuan-song LI2,Tian-de MO3,Yu LI3,Li-ping HUANG4,Jian-hong SU4,Wei-dong ZHANG5   

  1. 1.College of Automotive Studies,Tongji University,Shanghai 201804,China
    2.Technical Center,Zhejiang Hangcha Group Co. ,Ltd. ,Hangzhou 311305,China
    3.Smart City Division,Hong Kong Productivity Council,Hong Kong 999077,China
    4.Electric Forklift Research Institute,JAC Heavy-Duty Construction Machine Co. ,Ltd. ,Hefei 230051,China
    5.School of Information and Communication Engineering,Hainan University,Haikou 570228,China
  • Received:2022-03-06 Online:2022-09-01 Published:2022-09-13

Abstract:

A kind of propulsion system of a 2.5-ton fuel cell hybrid forklift was matched, which mainly consists of a 10 kW fuel cell system and a 25 A·h lithium battery pack (2 kW·h). And a power following energy management strategy of state recognition was established. The forklift model was created and simulated to verify the system and strategy. The results show that decreasing the keeping state of charge could improve the fuel economy and a reasonable switching state of charge could improve the stability of the system. The rated power of fuel cell system should be at least 15% higher than the average power under working conditions. During the dynamic process of state of charge decline after startup, the large capacity of battery could reduce the average power of the fuel cell system then improve the fuel economy. On the contrary, it wouldn't support the system to work a long time and could lead to an extreme state of charge volatility which would shorten its service life.

Key words: vehicle engineering, fuel cell hybrid forklift, forklift model, energy management strategy, degree of hybridization

CLC Number: 

  • U469.72

Fig.1

Fuel cell hybrid system structure"

Fig.2

Fuel cell hybrid forklift structure"

Table 1

Target parameters of fuel cell hybrid forklift"

参数单位数值
自重kg4100
额定载荷kg2500
起升高度mm3000
最大行驶速度km/h13
最大起升速度mm/s280
最大下降速度mm/s430
最大爬坡能力%15

Table 2

Basic parameters of fuel cell system"

参数单位数值
额定功率kW10
输出电压V30~52
最高效率%59
环境温度-30~55

Fig.3

Assembly model of fuel cell hybrid system"

Fig.4

Polarization curve"

Fig.5

Power and efficiency of fuel cell system"

Fig.6

First-order Li-Ion battery cell model"

Fig.7

Working mode recognition"

Fig.8

Power following control strategy"

Fig.9

Test cycle path"

Fig.10

Forklift moving and working velocity"

Fig.11

Changes of SOC under different SOCinitial"

Fig.12

Power demand and distribution offorklift under SOCinitial=0.8"

Fig.13

Changes of SOC under different SOCopt"

Table 3

Performances of working 3600 s under different SOCopt"

性能指标SOCopt
0.70.60.5
燃料电池系统平均效率/%54.7855.1155.44
耗氢量/g379.34364.26349.78
总等效耗氢量/g380.50375.03371.95
燃料电池系统平均功率/W6533.906304.106075.30
锂电池组平均功率/W-19.80186.40385.10

Fig.14

Changes of SOC under different SOCset"

Table 4

Performances of working 1500 s under different SOCset"

性能指标SOCset
0.80.70.6
燃料电池系统平均效率/%56.0456.0356.02
耗氢量/g133.99134.04134.13
总等效耗氢量/g152.12152.19152.25
燃料电池系统平均功率/W5651.705658.705661.60
锂电池组平均功率/W766.30765.90763.50

Fig.15

Changes of SOC under differentFCS rated power"

Fig.16

Changes of SOC under different battery capacity"

Fig.17

Changes of volatility and total equivalent consumption under different battery capacity"

1 温序晖, 杨海玉. 叉车用燃料电池概述[J]. 东方电气评论, 2020, 34(1): 6-11.
Wen Xu-hui, Yang Hai-yu. Review of fuel cell applied for forklift[J]. Dongfang Electric Review, 2020, 34(1): 6-11.
2 沈忱. 叉车用燃料电池混合动力系统集成及能量管理策略研究[D]. 杭州:浙江大学工程师学院, 2021.
Shen Chen. Fuel cell hybrid forklift system integration and research on energy management strategy[D]. Hangzhou: Polytechnic Institute, Zhejiang University, 2021.
3 任春龙. 叉车用PEMFC/蓄电池混合动力系统仿真研究[D]. 哈尔滨:东北林业大学工程技术学院, 2020.
Ren Chun-long. Research and Simulation of hybrid power system for fuel cell battery of forklift truck[D]. Harbin: College of Engineering and Technology, Northeast Forestry University, 2020.
4 Chan E, Dawson F, Bekker H, et al. A software simulation program for a hybrid fuel cell-battery power supply for an electric forklift[C]∥Proceedings of the 12th European Conference on Power Electronics and Applications, Aalborg, Denmark, 2007: No. 9852408.
5 Keränen T M, Karimaki H, Viitakangas J, et al. Development of integrated fuel cell hybrid power source for electric forklift[J]. Journal of Power Sources, 2011, 196(21): 9058-9068.
6 杨洁. 叉车质子交换膜燃料电池混合动力系统构建与仿真[D]. 哈尔滨:东北林业大学工程技术学院, 2019.
Yang Jie. Construction and simulation of hybrid power system for proton exchange membrane fuel cell of forklift[D]. Harbin: College of Engineering and Technology, Northeast Forestry University, 2019.
7 Pacheco D S, Gonzalez L G, Espinoza J L, et al. Energy consumption of an electric forklift truck: alternative with fuel cell and supercapacitor[C]∥IEEE International Autumn Meeting on Power, Ixtapa, MEXICO: Electronics and Computing (ROPEC), 2019 :11-15.
8 Hosseinzadeh E, Rokni M, Advani S G, et al. Performance simulation and analysis of a fuel cell/battery hybrid forklift truck[J]. International Journal of Hydrogen Energy, 2013, 38(11): 4241-4249.
9 Zhang Z, Mortensen H H, Jensen J V, et al. Fuel cell and battery powered forklifts[C]∥The 9th IEEE Vehicle Power and Propulsion Conference (VPPC), Beijing, China, 2013: No.13917769.
10 游志宇. PEMFC混合动力叉车能量管理策略及应用研究[D]. 成都:西南交通大学电气工程学院, 2015.
You Zhi-yu. Strategy and application study on energy management of proton exchange membrane fuel cell hybrid forklift[D]. Chengdu: School of Electrical Engineering, Southwest Jiaotong University, 2015.
11 Radica G, Tolj I, Markota D, et al. Control strategy of a fuel-cell power module for electric forklift[J]. International Journal of Hydrogen Energy, 2021, 46(72): 35938-35948.
12 徐煜超. 燃料电池混合动力叉车动力系统设计研究[D]. 青岛:青岛理工大学汽车与交通学院, 2018.
Xu Yu-chao. Design and study of fuel cell hybrid forklift power system[D]. Qingdao: School of Auto and Transportation, Qingdao University of Technology, 2018.
13 周静. 燃料电池混合动力叉车动力系统设计与仿真[D]. 西安:长安大学工程机械学院, 2019.
Zhou Jing. Design and simulation of fuel cell hybrid forklift power system[D]. Xi'an: School of Construction Machinery, Chang'an University, 2019.
14 郭高易. 叉车用燃料电池混合动力系统能量管理策略研究[D]. 成都:西南交通大学电气工程学院, 2018.
Guo Gao-yi. Research and design of energy management strategy for fuel cell hybrid power system of forklift truck[D]. Chengdu: School of Electrical Engineering, Southwest Jiaotong University, 2018.
15 张德玉. 燃料电池/蓄电池混合动力叉车电源系统设计[D]. 成都:西南交通大学电气工程学院, 2015.
Zhang De-yu. Design for power system of fuel cell/battery hybrid forklift[D]. Chengdu: School of Electrical Engineering, Southwest Jiaotong University, 2015.
16 于远彬, 王庆年, 王伟华, 等. 应用复合电源的轻度混合动力汽车的参数匹配[J].吉林大学学报: 工学版, 2009, 39(2): 281-285.
Yu Yuan-bin, Wang Qing-nian, Wang Wei-hua, et al. Parameter matching of mild hybrid electric vehicle with compound power supply[J]. Journal of Jilin University(Engineering and Technology Edition), 2009, 39(2): 281-285.
17 余志生. 汽车理论[M]. 5版. 北京:机械工业出版社,2009.
18 Puranik S V, Keyhani A, Khorrami F. State-space modeling of proton exchange membrane fuel cell[J]. Ieee Transactions on Energy Conversion, 2010, 25(3): 804-813.
19 O'hayre R, Cha S-W, Colella W, et al. Fuel Cell Fundamentals[M]. Hoboken, US: John Wiley & Sons, 2016.
20 王哲, 谢怡, 臧鹏飞, 等. 基于极小值原理的燃料电池客车能量管理策略[J]. 吉林大学学报: 工学版, 2020, 50(1): 36-43.
Wang Zhe, Xie Yi, Zang Peng-fei, et al. Energy management strategy of fuel cell bus based on Pontryagin's minimum principle[J]. Journal of Jilin University(Engineering and Technology Edition), 2020,50(1):36-43.
21 Nemes R, Ciornei S, Ruba M, et al. Modeling and simulation of first-order Li-Ion battery cell with experimental validation[C]∥Proceedings of the 8th International Conference on Modern Power Systems(MPS), Cluj-Napoca, Romania, 2019: 21-23.
22 匡累, 黄振华, 严杰, 等. 关于燃料电池电动汽车能耗计算方法的研究[J]. 现代车用动力, 2021, 46(3): 47-50.
Kuang Lei, Huang Zhen-hua, Yan Jie, et al. Research on calculation method of fuel cell electric vehicle power consumption[J]. Modern Vehicle Power, 2021, 46(3): 47-50.
23 强维博. 叉车混合动力系统设计及控制策略研究 [D]. 长沙: 中南大学机电工程学院, 2013.
Qiang Wei-bo. Hybrid power-train system design and research on control strategy for forklift[D]. Changsha: College of Mechanical and Electrical Engineering, Central South University, 2013.
24 . 平衡重式叉车整机试验方法 [S].
25 张涛, 宋珂, 章桐. 基于经济性的燃料电池汽车混合度对比研究[J]. 机电一体化, 2015, 21(7): 11-16.
Zhang Tao, Song Ke, Zhang Tong. Comparative study on degree of hybridization for fuel cell electric vehicle based on economy[J]. Mechatronics, 2015, 21(7): 11-16.
[1] Pei ZHANG,Zhi-wei WANG,Chang-qing DU,Fu-wu YAN,Chi-hua LU. Oxygen excess ratio control method of proton exchange membrane fuel cell air system for vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1996-2003.
[2] Xun-cheng CHI,Zhong-jun HOU,Wei WEI,Zeng-gang XIA,Lin-lin ZHUANG,Rong GUO. Review of model⁃based anode gas concentration estimation techniques of proton exchange membrane fuel cell system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1957-1970.
[3] Yao-wang PEI,Feng-xiang CHEN,Zhe HU,Shuang ZHAI,Feng-lai PEI,Wei-dong ZHANG,Jie-ran JIAO. Temperature control of proton exchange membrane fuel cell thermal management system based on adaptive LQR control [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2014-2024.
[4] Kui-yang WANG,Ren HE. Recognition method of braking intention based on support vector machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1770-1776.
[5] Qing GAO,Hao-dong WANG,Yu-bin LIU,Shi JIN,Yu CHEN. Experimental analysis on spray mode of power battery emergency cooling [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1733-1740.
[6] Jun-cheng WANG,Lin-feng LYU,Jian-min LI,Jie-yu REN. Optimal sliding mode ABS control for electro⁃hydraulic composite braking of distributed driven electric vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1751-1758.
[7] Han-wu LIU,Yu-long LEI,Xiao-feng YIN,Yao FU,Xing-zhong LI. Multi⁃point control strategy optimization for auxiliary power unit of range⁃extended electric vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1741-1750.
[8] Hong-bo YANG,Wen-ku SHI,Zhi-yong CHEN,Nian-cheng GUO,Yan-yan ZHAO. Optimization of tooth surface modification based on a two-stage reduction gear system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1541-1551.
[9] Guang-ming NIE,Bo XIE,Yan-tao TIAN. Design of cooperative adaptive cruise control algorithm based on Frenet framework [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1687-1695.
[10] Shuai HAO,Chuan-tai CHENG,Jun-nian WANG,Jun-yuan ZHANG,You YU. Ergonomic optimization and test evaluation of sports SUV cockpit layout design [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1477-1488.
[11] Jia-xu ZHANG,Chong GUO,Chen WANG,Jian ZHAO,Xin-zhi WANG. Performance evaluation of automatic parking system based on hardware in the loop simulation platform [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1552-1560.
[12] Chen HUA,Run-xin NIU,Biao YU. Methods and applications of ground vehicle mobility evaluation [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1229-1244.
[13] Xiong LI,Feng-chong LAN,Ji-qing CHEN,Fang TONG. Comparison of injuries in front impact between Hybird III dummy model and CHUBM human biomechanical model [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1264-1272.
[14] Ying-chao ZHANG,Yun-hang LI,Zi-yu GUO,Guo-hua WANG,Zhe ZHANG,Chang SU. Optimization of the aerodynamic drag reduction of a cab behind engine vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 745-753.
[15] Wen-ku SHI,Shu-guang ZHANG,You-kun ZHANG,Zhi-yong CHEN,Yi-fei JIANG,Bin-bin LIN. Parameter identification of magnetorheological damper model with modified seagull optimization algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 764-772.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!