Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (12): 3513-3525.doi: 10.13229/j.cnki.jdxbgxb.20231169

Previous Articles     Next Articles

Bending performance of cold-formed thin-walled steel-glulam composite beams

Hai-xu YANG(),Yue GUO,Hai-biao WANG(),Yi HU   

  1. College of Civil Engineering and Transportation,Northeast Forestry University,Harbin 150040,China
  • Received:2023-10-30 Online:2024-12-01 Published:2025-01-24
  • Contact: Hai-biao WANG E-mail:yhxcumt@nefu.edu.cn;whbcumt@163.com

Abstract:

Cold-formed thin-walled steel and glued wood were combined into a new type of box-section beam through different connection methods. Taking the steel and wood connection methods and steel crimp size as variables, three-point bending tests were carried out on four combined beams to investigate the damage mechanism and mechanical properties of the combined beams. The test results show that the overall performance of the combined beams is good, the deformation is coordinated, and the combined beams are finally destroyed by the fracture of the glued timber at the lower flange of the pure bending section. Under the different connection modes, the ultimate bending capacity of the glued-connected combined beams were improved by 61.5% and 23.0% compared with the bolted-connected and tapping screw-connected ones, respectively, in the same way as the glued-connected combined beams, the bending capacity of the combined beams is only improved by 9.0% by enlarging the dimensions of the steel crimps. A finite element model of the combined beam was established based on the test, and the simulation results were in good agreement with the test results. The finite element simulation results showed that the steel strength, steel thickness, and thickness of glued wood all had a certain effect on the bending capacity of the combined beam, with the thickness of glued wood having the greatest effect. Combined with the test results and simulation analysis of the cold-formed thin-walled steel-glued laminated timber combination beam span deflection and flexural capacity calculation formula, the theoretical values and simulation values are in good agreement, which can provide a certain reference for engineering practice.

Key words: structural engineering, modular structures, steel-timber modular beams, bending resistance

CLC Number: 

  • TU366.3

Fig.1

Combination beam section form(unit: mm)"

Fig.2

Schematic diagram of perforation at the web (unit: mm)"

Fig.3

Schematic diagram of perforation of flange (unit:mm)"

Table 1

Test beam barameter"

编号上下翼缘处胶合木层厚度/mm左右腹板处胶合木层厚度/mm型钢截面尺寸/mm上下翼缘处连接方式左右卷边处连接方式
GL120×50×20×2.0
ZL-14020120×50×20×2.0螺栓连接胶粘连接
ZL-24020120×50×20×2.0自攻螺钉连接胶粘连接
ZL-34020120×50×20×2.0胶粘连接胶粘连接
ZL-44020120×50×35×2.0胶粘连接胶粘连接

Table 2

Mechanical parameters of material testing"

材料弹性模量/MPa抗拉强度/MPa抗压强度/MPa屈服强度/MPa
胶合木9 777.8086.46
9 053.0042.29
钢板196 412.17325.53218.63
螺栓200 000.00400.00
自攻螺钉200 000.00400.00
环氧树脂胶4 000.0050.00

Fig.4

Experimental loading device(unit: mm)"

Fig.5

Strain gauge arrangement diagram"

Fig.6

GL distortion flexion and localised flexion"

Fig.7

ZL-1 web wood fibre projection and lower flange fracture"

Fig.8

ZL-2 end partially open glue and end lower flange fracture"

Fig.9

ZL-3 Longitudinal crack in span and ZL-4Longitudinal crack in span"

Fig.10

ZL-3 overall damage pattern and ZL-4 overall damage pattern"

Fig.11

Load-span deflection curve"

Table 3

Test results"

试件

编号

正常使用挠度值/mm正常使用极限荷载/kN跨中挠度极限值/mm承载力极限荷载/kN
GL9.69.5019.3215
ZL-19.618.2122.3565
ZL-29.631.5821.8185
ZL-39.643.3522.95105
ZL-49.652.6524.85115

Fig.12

Mid-span load-strain curve"

Fig.13

Height-strain curve of mid-span section"

Fig.14

Ontological relationship of steel"

Fig.15

Simplified model of components"

Fig.16

Composite beam finite element model stress cloud"

Fig.17

Load-mid-span deflection curve"

Table 4

Comparison of test and finite element simulation values"

编号极限荷载/kN跨中挠度/mm连接方式
试验值/kN模拟值/kN误差/%试验值/mm模拟值/mm误差/%
ZL-285.093.29.621.823.57.8自攻螺钉
ZL-3105.0112.67.222.924.88.2胶粘

Fig.18

Comparison of load-strain curves between tested and simulated values"

Table 5

Model parameters for each composite beam"

编号上下翼缘处胶合木层厚度/mm左右腹板处胶合木层厚度/mm钢材厚度/mm钢材型号
ZL-340202.0Q235
ZL-3-130202.0Q235
ZL-3-250202.0Q235
ZL-3-340201.5Q235
ZL-3-440202.5Q235
ZL-3-540202.0Q345
ZL-3-640202.0Q390

Fig.19

Load-mid-span deflection curves of combined beams with different parameters"

Table 6

Result of stiffness calculation by converted cross-section method"

编号Ieq(×10-6m4EI(×105N·m2
ZL-36.0511.87
ZL-3-14.839.49
ZL-3-27.5214.78
ZL-3-35.5110.82
ZL-3-46.5612.88

Fig.20

Comparison of simulated and theoretical value of model beam ZL-3-M"

Fig.21

Load-mid-span deflection curves for different value of β"

Table 7

Theoretical and simulated load value at allowable deflection of combined beams"

编号理论荷载值/kN模拟荷载值/kN误差/%
ZL-358.4057.970.74
ZL-3-146.6952.5112.47
ZL-3-272.7263.2513.02
ZL-3-353.2351.832.63
ZL-3-463.3765.303.05

Fig.22

Stress-strain distribution of glued laminated wood sections"

Fig.23

Stress-strain distribution of steel section"

Fig.24

Diagram for calculation of glued laminated timber in tension zone"

Table 8

Theoretical calculation results and comparative analysis of composite beam model ZL-3"

模型编号kx值/mm抗弯承载力Mu/(kN·m-1误差/%
理论值模拟值
ZL-30.7061.3449.5245.687.75
0.6558.7947.493.82
0.6056.1345.390.63
0.5553.4443.225.69
0.5050.7540.9911.45

Table 9

Results of error analysis of section flexural capacity for different values of k"

k理论值与模拟值对比误差/%平均误差/%
ZL-3ZL-3-1ZL-3-2ZL-3-3ZL-3-4
0.707.7520.660.8315.036.3910.13
0.653.8217.663.7311.052.707.79
0.600.6314.298.926.511.426.35
0.555.6910.4914.801.326.067.67
0.5011.456.1721.534.6511.3111.02
1 龚迎春,娄万里,李明月,等. 我国木结构产业发展展望[J]. 木材工业,2019,33(5):20-24.
Gong Ying-chun, Lou Wan-li, Li Ming-yue, et al. Prospects for timber structure industry in China[J]. China Wood Industry, 2019, 33(5):20-24.
2 曹磊,陈伯望. 胶合木梁抗剪性能研究综述[J]. 工程力学,2018,35(6):1-5, 14.
Cao Lei, Chen Bo-wang. Research review on shear behavior of glulam[J]. Engineering Mechanics, 2018, 35(6):1-5, 14.
3 谌晓梦. 建筑用木材的使用初探[J]. 中国建材科技,2020,29(1):105-107.
Chen Xiao-meng. Brief discussion on use of building timber[J]. China Building Materials Science & Technology, 2020, 29(1):105-107.
4 董福东. 钢-胶合木组合结构的发展与应用前景[J]. 安徽建筑,2019,26(10):202-203.
Dong Fu-dong. Development and application prospects of steel-glued wood combination structures[J]. Anhui Architecture, 2019, 26(10):202-203.
5 Pan F T, Wang Y, Huang C X, et al. Analysis of flexural performance of steel-timber composite cantilever beam[J]. IOP Conference Series: Materials Science and Engineering, 2020, 964(1):No.012002.
6 Soriano J, Pellis P B, Mascia T N. Mechanical performance of glued-laminated timber beams symmetrically reinforced with steel bars[J]. Composite Structures, 2016, (150):200-207.
7 Hassanieh A, Valipour H, Bradford M. Experimental and numerical study of steel-timber composite(STC) beams[J]. Journal of Constructional Steel Research, 2016(122):367-378.
8 Gomon S S, Petro G, Sviatoslav H, et al. Improving the strength of bending elements of glued wood[J]. Procedia Structural Integrity, 2022 (36):217-222.
9 陈爱国,李登辉,方超,等. H形钢-木组合梁受弯性能试验研究[J]. 建筑结构学报,2016,37(S1):261-267.
Chen Ai-guo, Li Deng-hui, Fang Chao. Experimental study on flexural behavior of H-shaped steel-wood composite[J]. Journal of Building Structures, 2016, 37(S1):261-267.
10 刘德贵,王宇豪,温勇,等. 内置薄壁H形钢-木组合梁受弯性能研究[J]. 建筑结构学报,2022,43(5):149-163.
Liu De-gui, Wang Yu-hao, Wen Yong, et al. Study on flexural behavior of built-in thin-walled H-steel timber composite beam[J]. Journal of Building Structures, 2022, 43(5):149-163.
11 郑志仁. 冷弯薄壁矩形型钢-木组合梁抗弯性能研究[D]. 扬州: 扬州大学建筑科学与工程学院,2023.
Zheng Zhi-ren. Study on bending behavior of cold formed thin-wallrectangular section steel-timber composite beam[D]. Yangzhou: College of Architectural Science and Engineering, Yangzhou University, 2023.
12 刘佳桐,雷云,郦维,等. 木-钢组合箱梁抗弯性能试验及有限元对比分析[J]. 中南林业科技大学学报,2023,43(6):178-189.
Liu Jia-tong, Lei Yun, Li Wei, et al. Test and fnite element(FE) analysis on the fexural performance of timber-steel composite box girders[J]. Journal of Central South University of Forestry & Technology, 2023, 43(6): 178-189.
13 .木结构试验方法标准 [S].
14 . 金属材料拉伸试验第1部分:室温试验方法 [S].
15 . 钢结构设计标准 [S].
16 石明. 冷弯薄壁型钢-胶合木组合梁力学性能研究[D]. 哈尔滨: 东北林业大学土木与交通学院,2021.
Shi Ming. Research on mechanical propertiesof cold-formed thin-wall steel-glulam composite beams[D]. Harbi: College of Civil Engineering and Transportation, Northeast Forestry University, 2021.
17 建筑结构静力计算手册编写组. 建筑结构静力计算手册[M]. 北京: 中国建筑工业出版社,2000.
18 . 木结构设计标准 [S].
19 蔡竞. 胶合木材料力学性能研究[D]. 大连: 大连理工大学土木工程学院,2014.
Cai Jing. Study on mechanical behavior of glued laminated timber[D]. Dalian: School of Civil Engineering,Dalian University of Technology, 2014.
20 孙泽阳, 刘阳, 杨俊锋, 等. 抢险车对92 m跨度复合材料桁架桥动态响应的影响[J]. 江苏大学学报: 自然科学版, 2024, 45(3): 346-353.
Sun Ze-yang, Liu Yang, Yang Jun-feng, et al. Influence of emergency vehicle on dynamic response of 92 m span composite truss bridge[J]. Journal of Jiangsu University(Natural Science Edition), 2024, 45(3): 346-353.
21 胥昕怡, 徐超. 基于原型监测的分离式加筋土桥台工作性能数值分析[J]. 江苏大学学报: 自然科学版, 2024, 45(2): 234-241.
Xu Xinyi, Xu Chao. Numerical analysis on working performance of separated reinforced soil abutment based on prototype monitoring[J]. Journal of Jiangsu University (Natural Science Edition), 2024, 45(2): 234-241.
[1] Jin-quan ZHAO,Long ZHOU,Yong-gang DING,Rong-ji ZHU. Experiment on anchoring performance of spiral stirrup-corrugated pipe grout splicing [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2484-2494.
[2] Wei-song YANG,An ZHANG,Wei-xiao XU,Hai-sheng LI,Ke DU. Seismic performance of stiffness enhanced metal coupling beam damper [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2469-2483.
[3] Qi-wu YAN,Zhong-liang ZOU. Hybrid algorithm for seismic energy-dissipated structures based on optimal placement of dampers [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2267-2274.
[4] Feng-guo JIANG,Yu-ming ZHOU,Li-li BAI,Shuang LIANG. Improved krill algorithm and its application in structural optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2256-2266.
[5] Guang-tai ZHANG,Cheng-xiao ZHOU,Shi-tuo LIU. Restoring force model of fiber lithium slag concrete column in saline soil environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1944-1957.
[6] Chun-lei ZHANG,Chang-yu SHAO,Qing-tian SU,Chang-yuan DAI. Experimental on positive bending behaviour of composite bridge decks with steel-fiber-reinforced concrete and longitudinal bulb-flat ribs [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1634-1642.
[7] Yan-song DIAO,Yi-jian REN,Yuan-qiang YANG,Ling-yun ZHAO,Xiu-li LIU,Yun LIU. Experimental on seismic performance of replaceable splicing steel beam-column joints with friction energy dissipation components [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1643-1656.
[8] Xue-ping FAN,Yue-fei LIU. Bridge extreme stress dynamic prediction based on improved Gaussian mixed particle filter new algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1038-1044.
[9] Yi-fan LIU,Zhi-wei MIAO,Chen SHEN,Xiang-dong GENG. Evaluation of mechanical properties of non-uniform corroded rebars based on Monte Carlo method [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1007-1015.
[10] Xue-ping FAN,Heng ZHOU,Yue-fei LIU. Time⁃variant reliability analysis of bridge members based on Gaussian Copula⁃Bayesian dynamic models [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 485-493.
[11] Xue-ping FAN,Heng ZHOU,Yue-fei LIU. Multi⁃process Bayesian dynamic combinatorial prediction of time⁃variant reliability for bridges [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2332-2338.
[12] Er-gang XIONG,Zhong-wen GONG,Jia-ming LUO,Tuan-jie FAN. Experiment on cracks in reinforced concrete beams based on digital image correlation technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1094-1104.
[13] Xiao-dong WANG,Ning-jing LI,Qiang LI. Experimental on crushing of concrete beams by high⁃voltage pulse discharge [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 496-504.
[14] Ya-chuan KUANG,Li-bin CHEN,Chao-ju LI,Yu-hao HE. Analysis of mechanical properties of stud shear connectors [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 538-546.
[15] Li-zhao DAI,Liang ZHOU,Xiao-wen YANG,Lei WANG. Meso-scale numerical simulation of interfacial bond behavior of corroded RC beams based on connector element [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(10): 2886-2896.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] . [J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[6] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[7] Feng Hao,Xi Jian-feng,Jiao Cheng-wu . Placement of roadside traffic signs based on visibility distance[J]. 吉林大学学报(工学版), 2007, 37(04): 782 -785 .
[8] Zhang He-sheng, Zhang Yi, Wen Hui-min, Hu Dong-cheng . Estimation approaches of average link travel time using GPS data[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .
[9] Qu Zhao-wei,Chen Hong-yan,Li Zhi-hui,Hu Hong-yu,Wei Wei . 2D view reconstruction method based on single calibration pattern
[J]. 吉林大学学报(工学版), 2007, 37(05): 1159 -1163 .
[10] Nie Jian-jun,Du Fa-rong,Gao Feng . Finite time thermodynamics of real combined power cycle operating
between internal combustion engine and Stirling engine with heat leak
[J]. 吉林大学学报(工学版), 2007, 37(03): 518 -0523 .