Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (12): 3526-3533.doi: 10.13229/j.cnki.jdxbgxb.20230192

Previous Articles     Next Articles

Identification of driving behavior on steep sharp curves based on latent class model

De-lin LI1(),Jun-xian CHEN1,Yong-gang WANG1(),Lu WANG1,Zhao-qing SHEN2   

  1. 1.School of Transportation Engineering,Chang'an University,Xi'an 710064,China
    2.School of Highway,Chang'an University,Xi'an 710064,China
  • Received:2023-03-04 Online:2024-12-01 Published:2025-01-24
  • Contact: Yong-gang WANG E-mail:lidelin@chd.edu.cn;wangyg@chd.edu.cn

Abstract:

The issue of distinguishing driving behavior characteristics in steep sharp curves was addressed by employing a behavior classification method based on vehicle driving parameters. After analyzing real driving data, six variables were selected, including vehicle type, velocity before curve, velocity after curve, deceleration before curve, car-following driving and differences in velocity pre- and post-curve. The characteristics of each type of drives were determined based on the construction of the latent model. The findings that drivers could be classified into three categories: stable drivers, restricted drivers, and free drivers. Stable drivers exhibited parameter values that fell between all three types, they tended to enter and exit curves at a consistent speed. Restricted drivers showed significant features of deceleration or car-following driving before curves. Conversely, the free drivers had the highest velocity before and after curve with their differences in velocity pre- and post-curve were also the highest.

Key words: engineering of communications and transportation system, driving behavior, steep sharp curve, K-means clustering, latent class model, driver classification

CLC Number: 

  • U491.255

Fig.1

Diagram of data collection in the steep sharp curve"

Table 1

Parameters for steep sharp curves"

急陡弯

编号

弯道

长度/m

实验路段总长/m坡度/%

转弯

半径/m

14905503.4780
25105703.8820
34805403.1740

Table 2

Data samples"

编号车牌车型入弯速度/(km·h-1出弯速度/(km·h-1速度差/(km·h-1入弯前减速行为跟驰行为
1陕H68839小汽车62.8662.390.47
2陕EWD075小汽车57.1042.7314.36
3陕HN5065小汽车54.2249.145.08
4陕A3B015摩托53.6054.83-1.22
5陕A2UE90小汽车59.6954.974.72
6陕HW5988小汽车54.3249.105.22
7陕H18682货车66.2455.5510.69

Fig.2

Scatterplot of velocity before and after curve"

Fig.3

Scatterplot of velocity differences before and after curve"

Table 3

Clustering results of explicit variables"

外显变量聚类数聚类中心
入弯速度/(km·h-1124.08
236.86
345.25
455.55
567.90
出弯速度/(km·h-1123.00
235.28
344.10
454.36
567.25
速度差/(km·h-11-8.53
20.43
36.73
49.84

Table 4

Statistical results of explicit variables"

编号变量名水平样本数量样本比例/%
V1车型153482.28
27211.09
3436.63
V2入弯速度/(km·h-118112.48
218528.51
323936.83
49614.79
5426.47
V3出弯速度/(km·h-117511.56
215323.57
326440.68
411016.95
5477.24
V4速度差/(km·h-118713.41
228243.45
322033.90
4609.24
V5

入弯前

减速行为

122033.90
242966.10
V6

跟驰行

驶行为

128243.45
236756.55

Table 5

Test result of models’ fitting goodness"

潜在类别个数AICBICχ2p-value
27 004.297 143.032 443.924.00E-41
36 557.476 767.811 212.960.000 16
46 319.566 601.51799.420.127
56 196.056 549.61427.291.000

Table 6

Result of model parameters’ estimation"

外显变

量名称

水平潜在类别
第1类第2类第3类
车型10.870 50.750 10.847 1
20.107 50.114 20.112 3
30.022 00.135 80.040 6
入弯速度10.000 20.380 90.000 3
20.160 80.618 20.000 6
30.838 80.000 50.068 7
40.000 20.000 20.647 2
50.000 10.000 10.283 2
出弯速度10.000 10.328 40.000 3
20.000 40.669 70.000 5
30.966 40.001 60.001 0
40.033 00.000 20.681 4
50.000 10.000 10.316 9

入弯前减

速行为

10.343 80.341 90.325 7
20.656 20.658 10.674 3
跟驰行驶10.416 50.627 00.171 2
20.583 50.373 00.828 8
总体概率0.420 10.351 60.228 3

Table 7

Drivers proportion of different categories after categorizing/%"

类别1类2类3类
潜在类别概率42.0135.1622.83
实际样本比例41.4535.1323.42
误差1.350.09-2.52

Table 8

Classification results of latent class model"

类别车型

入弯

速度

出弯

速度

入弯前减

速行为

跟驰

行为

1类123344.1940.241.661.58
229
36
2类116731.4333.11.651.38
226
331
3类113457.5350.331.681.8
217
36
1 国家统计局.交通事故年度数据查询[DB/OL].[2023-01-12].
2 吕璞,柏强,陈琳. 融合深度反残差与注意力机制的山区高速公路事故严重程度预测模型[J]. 中国公路学报, 2021, 34(6): 205-213.
Pu Lyu, Bai Qiang, Chen Lin. A model for predicting the severity of accidents on mountainous expressways based on deep inverted residuals and attention mechanisms[J]. China Journal of Highway and Transport, 2021, 34(6): 205-213.
3 胡立伟,薛刚,李林育,等. 高原地质及气象环境下公路交通风险致因耦合分析[J]. 中国公路学报, 2018, 31(1): 110-119.
Hu Li-wei, Xue Gang, Li Lin-yu, et al. Analysis of coupling of highway traffic risks in geological and meteorological environment of plateau regions[J]. China Journal of Highway and Transport, 2018, 31(1): 110-119.
4 Praveena P, Srinivas P S. Modeling crash injury severity by road feature to improve Safety[J]. Traffic Injury Prevention, 2018, 19(1): 102-109.
5 房锐,张琪,胡澄宇,等. 基于风险矩阵的干线公路弯道路段交通冲突风险评估模型[J]. 交通运输系统工程与信息, 2021, 21(2): 166-172.
Fang Rui, Zhang Qi, Hu Cheng-yu, et al. Risk assessment model based on risk matrix for traffic conflict on arterial highway bend section[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(2): 166-172.
6 曲昭伟,李霖,陈永恒,等.长区间掉头车辆特性分析及其安全评价[J].吉林大学学报:工学版,2024,54(8):2206-2213 .
Qu Zhao-wei, Li Lin, Chen Yong-heng, et al. Traffic characteristics and safety analysis of long interval U-turn intersections[J]. Journal of Jilin University (Engineering and Technology Edition), 2024,54(8): 2206-2213 .
7 王海晓,李永翔,丁旭,等.基于边缘智能的城市下穿隧道车辆行车安全预测[J].吉林大学学报: 工学版, 2022, 52(6): 1337-1343.
Wang Hai-xiao, Li Yong-xiang, Ding Xu, et al. Traffic safety prediction of urban underpass tunnel vehicles based on edge intelligence[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(6): 1337-1343.
8 Wu J W, Yan X D, Radwan E. Discrepancy analysis of driving performance of taxi drivers and non-professional drivers for red-light running violation and crash avoidance at intersections[J]. Accident Analysis & Prevention, 2016, 91: 1-9.
9 Mani K, Mun S W, Hayati K. Speeding among taxi drivers in Selangor, Malaysia[J]. Injury Prevention, 2010, 16(1): No.A14.
10 Ahmed M, Abdel A M, Yu R. Assessment of Interaction of crash occurrence mountainous freeway geometry, real-time weather, and traffic data[J]. Transportation Research Record, 2012(1): 51-59.
11 Yuan J, Abdel A M, Wang L, et al. Real-time crash risk analysis of urban arterials incorporating Bluetooth, weather and adaptive signal control data[DB/OL].[2023-01-13].
12 Athanasios T. Incorporating real-time traffic and weather data to explore road accident likelihood and severity in urban arterials[J]. Journal of Safety Research, 2017, 61: 9-21.
13 孟祥海,张道玉,吴佩洁. 滑动窗窗体长度及滑动步长对事故多发路段鉴别影响[J]. 交通运输系统工程与信息, 2018, 18 (4): 148-155.
Meng Xiang-hai, Zhang Dao-yu, Wu Pei-jie. The impact of window size and sliding length on the results of black spots identification[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(4): 148-155.
14 Wang X, Feng M. Freeway single and multi-vehicle crash safety analysis: influencing factors and hotspots [J]. Accident Analysis & Prevention, 2019, 132(1): 52-68.
15 李骁楠,陈丰,董博文. 考虑桥梁结构运动的河口大跨桥梁事故风险因素分析[J]. 同济大学学报: 自然科学版, 2021, 49(6): 863-871.
Li Xiao-nan, Chen Feng, Dong Bo-wen. Analysis of risk factors of estuarine long-span bridge considering bridge structure movement[J]. Journal of Tongji University (Nature Science), 2021, 49(6): 863-871.
16 薛锋,胡萍,黄宇. 基于组合模型的公路隧道交通安全评价[J].公路交通科技, 2021, 38(7): 85-95.
Xue Feng, Hu Ping, Huang Yu. Traffic safety evaluation of highway tunnel based on combined model[J]. Journal of Highway and Transportation Research and Development, 2021, 38(7): 85-95.
17 钱勇,马建霄,赵顗,等. 基于集对可拓物元模型的公路隧道运营环境安全评价方法[J]. 森林工程, 2020, 36(1): 87-95.
Qian Yong, Ma Jian-xiao, Zhao Yi, et al. Safety evaluation method for highway tunnel operation environment based on set -pair extension matter element model[J]. Forest Engineering, 2020, 36(1): 87-95.
18 Yan M H, Xu J L. Prediction model for brake-drum temperature of large trucks on consecutive mountain downgrade routes based on energy conservation law[J]. Mathematical Problems in Engineering, 2018, 2018(11): No.4587673.
19 丰明洁,王婷,王雪松,等. 山区高速公路平纵组合路段设计安全评估[J]. 北京工业大学学报, 2018, 44(6): 919-925.
Feng Ming-jie, Wang Ting, Wang Xue-song, et al. Safety evaluation of combined horizontal and vertical alignments on mountainous freeways[J]. Journal of Beijing University of Technology, 2018, 44(6): 919-925.
20 寇云蛟. 小半径弯坡路段行车特性分析与安全处置策略研究[D]. 重庆:重庆交通大学交通运输学院, 2020.
Kou Yun-jiao. Analysis of driving characteristics and study of safety disposal strategy in small radius curve section[D]. Chongqing:College of Traffic & Transportation, Chongqing Jiaotong University, 2020.
21 张晓波. 三岔型枢纽互通事故高发匝道的形成机制与安全提升研究[J]. 中国安全生产科学技术, 2022, 18(2): 198-205.
Zhang Xiao-bo. Study on formation mechanism and safety improvement of accident-prone ramp on "T" shape hub interchange [J]. Journal of Safety Science and Technology, 2022, 18(2): 198-205.
22 邱皓政. 潜在类别模型的原理与技术[M]. 北京: 教育科学出版社, 2008.
[1] Rong-gui ZHOU,Pei GAO,Yu-xuan LI,Jian ZHOU. Abnormal driving behavior thresholds of highway minibuses based on trajectory data [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2581-2587.
[2] Li-xin YAN,Tao ZENG,Yi HE,Jun-hua GUO,Xin-hui HU. Man-machine takeover behavior sequence coding and analysis of shared driving intelligent vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2547-2556.
[3] Zhao-wei QU,Lin LI,Yong-heng CHEN,Chang-jian WU. Traffic characteristics and safety analysis of long interval U-turn intersections [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2206-2213.
[4] Yong-ming HE,Cong QUAN,Kun WEI,Jia FENG,Ya-nan WAN,Shi-sheng CHEN. Perceptual fusion method of vehicle road cooperation roadside unit in superhighway [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1923-1934.
[5] Guo-zhu CHENG,Lin SHENG,Hao-yu WANG,Tian-jun FENG. Safety evaluation method for pedestrians crossing street at signalized intersection considering secondary conflict of right-turn vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1903-1912.
[6] Gui-zhen CHEN,Hui-ting CHENG,Cai-hua ZHU,Yu-ran LI,Yan LI. A risk evaluation method for urban intersections considering drivers' physiological information [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1277-1284.
[7] Ming-ye ZHANG,Min YANG,Yu LI,Shi-yu HUANG,Qing-yun LI. Optimal electric bus scheduling with multiple vehicle types considering coordinated recharging strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1293-1301.
[8] Ren-xiang CHEN,Chao-chao HU,Xiao-lin HU,Li-xia YANG,Jun ZHANG,Jia-le HE. Driver distracted driving detection based on improved YOLOv5 [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 959-968.
[9] Xiao-hua ZHAO,Chang LIU,Hang QI,Ju-shang OU,Ying YAO,Miao GUO,Hai-yi YANG. Influencing factors and heterogeneity analysis of highway traffic accidents [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 987-995.
[10] Da-yi QU,Ke-kun ZHANG,Yuan GU,Tao WANG,Hui SONG,Shou-chen DAI. Analysis of lane⁃changing decision⁃making behavior and molecular dynamics modeling for autonomous vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(3): 700-710.
[11] Xiao-yu YI,Mian-zhu YI. Network book resource recommendation based on deep fusion of interest information [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(12): 3614-3619.
[12] Shi-feng NIU,Shi-jie YU,Yan-jun LIU,Chong MA. Real-time detection method of angry driving behavior based on bracelet data [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(12): 3505-3512.
[13] Zhi ZHENG,Pei YUAN,Xuan-hui JIN,Si-si WEI,Bo GENG. Experimental on composite flexible anti⁃collision fender of bridge pier [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2581-2590.
[14] Guo-zhu CHENG,Lin SHENG,Hao ZHAO,Tian-jun FENG. Exclusive phase setting condition of signalized intersection based on risk analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 1962-1969.
[15] Yong-ming HE,Shi-sheng CHEN,Jia FENG,Ya-nan WAN. Superhighway virtual track system based on high precision map [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2016-2028.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] . [J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[6] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[7] Feng Hao,Xi Jian-feng,Jiao Cheng-wu . Placement of roadside traffic signs based on visibility distance[J]. 吉林大学学报(工学版), 2007, 37(04): 782 -785 .
[8] Zhang He-sheng, Zhang Yi, Wen Hui-min, Hu Dong-cheng . Estimation approaches of average link travel time using GPS data[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .
[9] Qu Zhao-wei,Chen Hong-yan,Li Zhi-hui,Hu Hong-yu,Wei Wei . 2D view reconstruction method based on single calibration pattern
[J]. 吉林大学学报(工学版), 2007, 37(05): 1159 -1163 .
[10] Nie Jian-jun,Du Fa-rong,Gao Feng . Finite time thermodynamics of real combined power cycle operating
between internal combustion engine and Stirling engine with heat leak
[J]. 吉林大学学报(工学版), 2007, 37(03): 518 -0523 .