Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (2): 456-467.doi: 10.13229/j.cnki.jdxbgxb.20240874

Previous Articles    

Continuous test scenario complexity evaluation method for automated driving vehicles

Bing ZHU1(),Tian-xin FAN1,Wen-bo ZHAO2,Wei-nan LI3,Pei-xing ZHANG1()   

  1. 1.National Key Laboratory of Automotive Chassis Integration and Bionics,Jilin University,Changchun 130022,China
    2.China Intelligent and Connected Vehicles (Beijing) Research Institute Co. ,Ltd. ,Beijing 100176,China
    3.China First Automobile Corporation R&D Center,Changchun 130011,China
  • Received:2024-08-05 Online:2025-02-01 Published:2025-04-16
  • Contact: Pei-xing ZHANG E-mail:zhubing@jlu.edu.cn;zhangpeixing@jlu.edu.cn

Abstract:

Continuous test scenario is an important content of automated driving vehicle scenario-based testing system, but its fairness has been disputed. For this reason, this paper proposes a real-time evaluation method for the continuous test scenario complexity of automated driving vehicle, with a view to solving the problem of test scenario fairness. Based on the six-layer scenario model, a scenario element importance assessment system is established; through analyzing the mapping relationship between scenario elements and perception, decision-making, and execution systems, a quantitative evaluation method of scenario complexity at the system layer is constructed; the impact transfer weighting coefficients of different system are calculated, which can be used to realize the comprehensive calculation of scenario complexity in real time. The traffic circle continuous test scenario is selected to analyze the scenario complexity of two black-box automated driving systems, the results of the scenario complexity of the two vehicles are 1 and 0.765, which are consistent with the scenario complexity encountered by the two tested systems in the test process. The results can prove the effectiveness of the method proposed in this paper.

Key words: automotive engineering, automated driving vehicle, continuous test scenario, scenario complexity

CLC Number: 

  • U461

Fig.1

Scenario complexity evaluation framework"

Table 1

Scenario elements classification table"

一级分类二级分类三级分类

静态

场景

要素

道路层道路类型
道路质量
车道数量
道路标线
……
交通设施层信号灯
标志牌
其他设施
……
临时操作层交通事故
临时停放
道路施工
……

动态

场景

要素

目标层机动车
非机动车
行人
……
天气要素自然环境层光照
……

Fig. 2

Point curve diagram of the relationship between point cloud and relative distance"

Table 2

Distribution table of influence coefficients of weather elements"

天气要素

传感器类型

传感器类型
相机毫米波雷达激光雷达
光照10--
0--
5--
402530
704770
755380
20550
403280
606090
101050
252080
604090

Fig. 3

Schematic diagram of the potential field of scenario elements"

Fig. 4

Map of reachable areas for automated driving vehicles"

Fig. 5

Schematic diagram of decision planning margins for automated driving vehicles"

Fig.6

Subsystem impact flowchart diagram for automated driving vehicles"

Fig.7

Continuous test scenario"

Table 3

Comprehensive Performance evaluation index table for automated driving vehicles"

总指标层权重指标层权重系统A系统B
安全性0.48避障平均车速118.1914.89
效率0.16平均变道时间15.448.72
智能性0.07避障平均最小TTC0.348.4012.56
车道保持距离道路中线最大距离0.660.720.63
舒适性0.29纵向加速度最大值0.622.572.10
横向加速度最大值0.382.061.53

Table 4

Scenario elements scoring table"

一级

分类

二级

分类

重要权重

系数

三级分类

重要权重

系数

属性特征评分
静态场景要素道路层0.1748道路类型0.356 53
道路质量0.113 61
车道数量0.265 02
道路标线0.265 01
交通设施层0.0828信号灯0.722 92
标志牌0.201 12
其他设施0.076 0-
临时操作层0.0667交通事故0.439 1-
临时停放0.318 7-
道路施工0.242 2-
动态场景要素目标层0.6757机动车0.128 83
非机动车0.260 94
行人0.610 33

Fig.8

Normalized decision planning margin diagram for automated driving vehicles"

Fig.9

Comparison chart of road segments of automated driving vehicles"

Table 5

Scenario elements-system complexity mapping relationship table"

复杂度系统A系统B
感知系统8.030 26.849 7
决策系统0.525 10.295 8
执行系统1.478 41.327 0

Table 6

Comprehensive performance evaluation table for automated driving vehicles"

评价项目系统A系统B
不考虑场景复杂度的评分0.840.94
场景相对复杂度10.765
考虑场景复杂度的评分0.840.72
1 赵祥模教授国家重点研发计划( 2021 YFB2501200 )团队.自动驾驶测试与评价技术研究进展[J].交通运输工程学报, 2023, 23(6): 10-77.
Zhao Xiang-mo's team supported by the National Key Research and Development Program of China( 2021 YFB2501200). Research progress in testing and evaluation technologies for autonomous driving[J]. Journal of Traffic and Transportation Engineering, 2023, 23(6): 10-77.
2 朱冰, 张培兴, 赵健, 等. 基于场景的自动驾驶汽车虚拟测试研究进展[J].中国公路学报, 2019, 32(6): 1-19.
Zhu Bing, Zhang Pei-xing, Zhao Jian, et al. Review of scenario-based virtual validation methods for automated vehicles[J]. China Journal of Highway and Transport, 2019, 32(6): 1-19.
3 Shadrin S S, Ivanov A M, Makarova D A. Methods of parameter verification and scenario generation during virtual testing of highly automated and autonomous vehicles[C]∥Intelligent Technologies and Electronic Devices in Vehicle and Road Transport, New York, USA, 2022: 1-6.
4 Amirul I A B, Mohd A A, Mohd F M S. Synthesis of autonomous vehicle guideline for public road-testing sustainability[J]. Sustainability, 2022, 14(3): 1-18.
5 Dixit V V, Chand S, Nair D J. Autonomous vehicles: disengagements, accidents and reaction times[J]. Plos One, 2016, 11(12): 1-14.
6 王荣, 孙亚夫, 宋娟. 自动驾驶汽车道路测试场景评价方法与试验验证[J].汽车工程, 2021, 43(4): 620-628.
Wang Rong, Sun Ya-fu, Song Juan. Evaluation method and test verification of road test scenes for autonomous vehicles[J]. Automotive Engineering, 2021, 43(4): 620-628.
7 李江坤, 邓伟文, 任秉韬, 等. 一种智能汽车测试场景复杂度的评估方法[C]∥中国汽车工程学会年会论文集, 北京, 中国, 2020: 106-113.
8 董汉, 舒伟, 陈超, 等. 危险驾驶工况场景的复杂度评估方法研究[J].汽车工程, 2020, 42(6): 808-814.
Dong Han, Shu Wei, Chen Chao, et al. Research on complexity evaluation method of dangerous driving scenes[J]. Automotive Engineering, 2020, 42(6): 808-814.
9 Liu Y K, Hansen J H L. Towards complexity level classification of driving scenarios using environmental information[C]∥IEEE Intelligent Transportation Systems Conference, New York, USA, 2019: 810-819.
10 Kim I Y, Kang D Y, Jeong H. Method of evaluating multiple scenarios in a single simulation run for automated vehicle assessment[J]. Sensors, 2023, 23(19): 1-19.
11 Lu C R, Dong J, Houchin A. Incorporating the standstill distance and time headway distributions into freeway car-following models and an application to estimating freeway travel time reliability[J]. Journal of Intelligent Transportation Systems, 2021, 25(1): 21-40.
12 Winner H, Lemmer K, Form T, et al. Pegasus- first steps for the safe introduction of automated driving[C]∥Road Vehicle Automation 5, Heidelberg, Germany, 2019: 185-195.
13 Xu T F, Zhao P. Image motion-blur-based object's speed measurement using an interlaced scan image[J]. Measurement Science and Technology, 2010, 21(7): 1-10.
14 王战古. 不良天气条件下车辆检测方法研究[D]. 长春:吉林大学汽车工程学院, 2022.
Wang Zhan-gu. Research on vehicle detection method under adverse weather conditions[D]. Changchun: College of Automotive Engineering, Jilin University, 2022.
15 李鑫. 面向汽车智能驾驶的毫米波雷达建模与仿真研究[D]. 长春: 吉林大学汽车工程学院, 2020.
Li Xin. Research on modeling and simulation of millimeter wave radar for vehicle intelligent driving[D]. Changchun: College of Automotive Engineering, Jilin University, 2020.
16 赵轩. 基于路侧激光雷达的交通目标感知方法与实现[D].西安:西安工业大学电子信息工程学院, 2023.
Zhao Xuan.Roadside lidar-based traffic target sensing method and implementation[D]. Xi'an: College of Electronic Information Engineering, Xi'an Technological University, 2023.
17 葛平淑, 郭烈, 齐国栋, 等. 变光照环境下车道标识线的识别方法[J].激光与光电子学进展, 2020, 57(16): 1-6.
Ge Ping-shu, Guo Lie, Qi Guo-dong, et al. Lane marker line identification method in variable light environment[J]. Laser and Optoelectronics Progress, 2020, 57(16): 1-6.
18 蒋渊德, 孙朋朋, 秦孔建, 等. 雨雪天气对自动驾驶视觉图像质量的影响[J].中国公路学报, 2022, 35(3): 307-316.
Jiang Yuan-de, Sun Peng-peng, Qin Kong-jian, et al. Influence of rain and snow on autonomous vehicles' camera[J].China Journal of Highway and Transport, 2022, 35(3): 307-316.
19 Elizabeth E, Andrew B, Bani H N, et al. Experimental investigation of the effects of fog on optical camera-based VLC for a vehicular environment[C]∥15th International Conference on Telecommunications, New York, USA, 2019: 1-5.
20 Zang S Z, Ding M, Smith D, et al. The impact of adverse weather conditions on autonomous vehicles: how rain, snow, fog, and hail affect the performance of a self-driving car[J].IEEE Vehicular Technology Magazine, 2019, 14(2): 103-111.
21 白雪松, 邓伟文, 任秉韬, 等. 一种自动驾驶仿真场景要素的提取方法[J].汽车工程, 2021, 43(7): 1031-1036.
Bai Xue-song, Deng Wei-wen, Ren Bing-tao, et al. An extraction method of scenario elements for autonomous driving simulation[J].Automotive Engineering, 2021, 43(7): 1031-1036.
22 Keisuke Y, Naoki S, Ryo Y, et al. Automated driving recognition technologies for adverse weather conditions[J].IATSS Research, 2019, 43: 253-262.
23 孙朋朋, 赵祥模, 蒋渊德, 等. 降雨条件对车载激光雷达性能影响的试验研究[J].中国公路学报, 2022, 35(11): 318-328.
Sun Peng-peng, Zhao Xiang-mo, Jiang Yuan-de, et al. Experimental study of influence of rain on performance of automotive lidar[J]. China Journal of Highway and Transport, 2022, 35(11): 318-328.
24 何俊南, 姜京秀, 孙朋朋. 降雪环境对激光雷达性能的影响分析与试验研究[J]. 时代汽车, 2323, 12: 20-22.
He Jun-nan, Jiang Jing-xiu, Sun Peng-peng. Analysis and experimental research on the influence of lidar performance in snowfall environment[J]. Auto Time, 2323, 12: 20-22.
25 Kutila M, Pyykönen P, Holzhüter H, et al. Automotive lidar performance verification in fog and rain[C]∥21st International Conference on Intelligent Transportation Systems, New York, USA, 2018: 1695-1707.
26 Wang W, Wu L G, Li X, et al. An evaluation method for automated vehicles combining subjective and objective factors[J]. Machines, 2023, 11(6): 1-22.
[1] Xiao WU,Wen-ku SHI,Nian-cheng GUO,Yan-yan ZHAO,Zhi-yong CHEN,Xin-peng LI,Zhuo SUN,Jian LIU. Multi-objective optimization of hypoid gears based on Ease off [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 76-85.
[2] Bai-cang GUO,Guo-feng LUO,Li-sheng JIN,Xian-yi XIE,Dong-xian SUN. Construction method of cut-in scenario library for automatic driving virtual tests [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(11): 3130-3140.
[3] Xing-tao LIU,Xiao-jian LIU,Ji WU,Yao HE,Xin-tian LIU. State of health estimation method for lithium⁃ion battery based on curve compression and extreme gradient boosting [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1273-1280.
[4] Xing-tao LIU,Si-yuan LIN,Ji WU,Yao HE,Xin-tian LIU. Regenerative braking optimization strategy considering battery state of power [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(12): 2796-2805.
[5] WANG Jun-nian, YE Tao, SUN Wen, WANG Qing-nian. Vibration isolation performance of energy-regenerative semi-active suspension with variable stiffness and damping [J]. 吉林大学学报(工学版), 2017, 47(3): 701-708.
[6] LIU Yang, SUN Ze-chang, WANG Meng. Brake force cooperative control and test for integrated electro-hydraulic brake system [J]. 吉林大学学报(工学版), 2016, 46(3): 718-724.
[7] HAN Fei, ZHANG Su-min, LIU Jia-yi. Estimation of probability of blind zone of vehicle rearview mirror based on eyellipse [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 521-525.
[8] WANG Qing-nian, QU Xiao-dong, YU Yuan-bin. Optimal matching of HEV with composite electric power supply [J]. 吉林大学学报(工学版), 2013, 43(05): 1153-1159.
[9] JIN Liqiang, WANG Qingnian, SONG Chuanxue. Simulation of 4-wheel independent driving electric vehicle dynamics control system [J]. 吉林大学学报(工学版), 2004, (4): 547-553.
[10] SONG Chuanxue, CAI Zhanglin. Modeling and simulation of double wishbone suspension based on ADAMS/CAR [J]. 吉林大学学报(工学版), 2004, (4): 554-558.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!