Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (1): 76-85.doi: 10.13229/j.cnki.jdxbgxb.20220251

Previous Articles     Next Articles

Multi-objective optimization of hypoid gears based on Ease off

Xiao WU1(),Wen-ku SHI1(),Nian-cheng GUO2,Yan-yan ZHAO2,Zhi-yong CHEN1,Xin-peng LI1,Zhuo SUN1,Jian LIU2   

  1. 1.State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022,China
    2.Automotive Research Institute,China National Heavy Duty Truck (Group Crop. ),Jinan 250100,China
  • Received:2022-03-15 Online:2024-01-30 Published:2024-03-28
  • Contact: Wen-ku SHI E-mail:1115625614@qq.com;shiwk@jlu.edu.cn

Abstract:

In order to realize the multi-objective optimization of hypoid gears, a neural network surrogate model was established to describe the relationship between Ease off modification parameters and transfer error, tooth root stress and meshing loss power. Firstly, the dynamics software MASTA was used to establish the hypoid gear drive axle model. Based on the sensitivity coefficient matrix, the machine tool modification parameters corresponding to the second-order Taylor expansion of tooth surface deviation were derived, and the modified gear model was established. Secondly, the transmission error, tooth root stress and meshing loss power of the modified gear model were calculated through MASTA's loading tooth surface contact analysis function, and the neural network agent model was finally established. NSGA-II multi-objective optimization algorithm was used to optimize the surrogate model for comparative verification. The results show that the proposed multi-objective optimization method can effectively reduce transmission error, tooth root stress and meshing power loss of hypoid gears.

Key words: automotive engineering, Ease off, hypoid gear, NSGA-Ⅱ, multi-objective optimization

CLC Number: 

  • U463.2

Fig.1

Position relationship of original and modified tooth surface"

Fig.2

Ease off topology tooth surface"

Fig.3

Drive axle model"

Table 1

Parameters of drive axle"

参数数值
主减速比41
桥壳网格单元最大尺寸/mm10
桥壳网格单元最小尺寸/mm4
桥壳网格单元坍塌比最小值0.2
桥壳网格单元总数3 071 501
桥壳密度/(kg·m-37 850
桥壳弹性模量/MPa206 800
桥壳泊松比0.29
轴系密度/(kg·m-37 850
轴系弹性模量/MPa212 000
轴系泊松比0.28
齿轮密度/(kg·m-37 800
齿轮弹性模量/MPa207 000
齿轮泊松比0.29

Table 2

Parameters of hypoid gear"

参数/单位主动齿轮被动齿轮
齿数1041
旋向
轴夹角/(°)9090
节圆模数/mm10.9810.98
中点螺旋角/(°)3535
平均压力角/(°)22.5022.50
齿宽/mm79.0272.00
全齿高/mm20.4520.69
齿顶高/mm18.1218.35
平均节圆直径/mm112.26380.90
节锥角/(°)16.4873.10
面锥角/(°)20.2473.89
根锥角/(°)15.7169.36

Fig.4

Ease off chart of pinion gear concave"

Fig.5

Ease off and modification topology tooth surface"

Fig.6

Multi-objective optimization process"

Table 3

Parameters of FE model"

参数主动齿轮被动齿轮
网格大小/mm5.9527.14
轮廓网格密度44
表面网格数88
圆角网格数88
径向网格数44

Fig.7

Finite element model of pinion gear"

Fig.8

Finite element model of wheel gear"

Fig.9

Power flow of drive axle"

Fig.10

Pinion gear TE results of 1000 N·m"

Fig.11

Pinion gear peak-to-peak TE"

Table 4

Peak-to-peak TE results of 1000 N·m"

参数数值

主动齿轮载荷/(N·m)

被动齿轮载荷/(N·m)

主动齿轮峰峰值误差/μrad

从动齿轮峰峰值误差/μrad

1000.00

4100.00

340.8482

83.1337

Table 5

Maximum root stress results of 1000 N·m"

参数主动齿轮被动齿轮

最大米氏应力(拉伸)/MPa

最大米氏应力(压缩)/MPa

最大主应力(拉伸)/μrad

最大主应力(压缩)/μrad

147.0513

130.5012

166.4879

89.5532

91.5480

124.0980

111.8853

74.3783

Fig.12

Pinion gear maximum von Mises root stress"

Table 6

Parameters of pinion gear transmission efficiency"

参数单位数值
中点螺旋角βmrad0.61
润滑油运动粘度vcst50
接触面宽度bwmm10.23
小轮中点分度圆半径rm1mm54.88
端面压力角αtmrad0.39
中点锥距Rmmm197.81
外锥距Remm235.15
节圆半径rmm56.30
分锥角δrad0.29
齿顶高系数haemm18.12
齿面角δarad0.35
齿宽bmm79.05

Table 7

Sensitivity analysis"

项目组合(1)组合(2)组合(3)组合(4)组合(5)
螺旋角误差系数a00.010000
压力角误差系数a100.01000
齿长曲率系数a2000.00100
齿廓曲率系数系数a30000.010
齿面挠率系数a400000.001
传递误差平均值1602.6499.11981.13674.42021.1

Table 8

Parameters of surrogate model"

模型厚度取值/mm
螺旋角误差系数a00,0.0002
压力角误差系数a10,0.0002
齿长曲率系数a20,0.0001,0.0002,0.0003
齿廓曲率系数系数a30,0.0005,0.001
齿面挠率系数a40,0.0001,0.0002,0.0003,0.0004,0.0005

Table 9

Verify parameter of model"

输入集/10-5MASTA模型计算结果代理模型计算结果相对误差/%
a0a1a2a3a4TE/μRadRS/MPaPMi/WTE/μradRS/MPaPMi/WTERSPMi
1010555202.492268.010199.561199.761261.973204.972-1.349-2.253+2.712
1010151515248.317378.304213.967240.194384.523207.173-3.271+1.644-3.175
55555200.561375.798198.673219.913368.846204.691+9.659-1.850+3.029
515252525435.081354.052238.767428.970349.637250.111-1.405-1.248+4.751
55151515245.919319.348210.820261.183330.652216.814+6.207+3.540+2.843

Fig.13

Multi-objective optimization results"

Table 10

Model optimal solution and verification"

最优解集/10-5MASTA模型计算结果代理模型计算结果相对误差/%
a0a1a2a3a4TE/μradRS/MPaPMi/WTE/μradRS/MPaPMi/WTERSPMi
0016.7038.9112.681292.985185.378107.947297.218182.961-4.201+1.445-1.304
0016.722.216.7107.935300.674183.095115.236289.028179.898+6.764-3.873-1.746
04.416.722.216.7121.356245.574190.279115.263261.931185.196-5.021+6.661-2.671
4.42016.7033.3119.601253.077189.586111.027259.501182.787-7.169+2.538-3.586
2.2016.711.133.3151.667275.755192.056145.458288.334193.534-4.094+4.562+0.770

Fig.14

Best ease off surface"

Fig.15

Best ease off surface peak-to-peak TE of pinion gear"

Fig.16

Best ease off surface TE of pinion gear of 1000 N·m"

Fig.17

Best ease off surface maximum von Mises rootstress pinion gear"

Table 11

Comparison of performance before and afteroptimization"

模型TE/μradRS/MPaPMi/W
性能提升百分比/%39.60022.39519.964
原始齿面178.701387.444228.767
Ease off最优面107.935300.674183.095
1 Park Nogill. A generalized hypoid gear synthesized with common crown rack positioned between pinion and gear blanks[J]. Journal of Mechanical Design, 2017, 139(8): No. 085001.
2 魏冰阳, 杨建军, 仝昂鑫, 等. 基于等距Ease-off曲面的轮齿啮合仿真分析[J]. 航空动力学报, 2017, 32(5): 1259-1265.
Wei Bing-yang, Yang Jian-jun, Tong Ang-xin, et al. Simulation analysis of gear tooth meshing based on isometric ease-off surface[J]. Journal of Aerospace Power, 2017, 32(5): 1259-1265.
3 Li G, Zhu W. An active ease-off topography modification approach for hypoid pinions based on a modified error sensitivity analysis method[J]. Journal of Mechanical Design, 2019, 141(9): 1-10.
4 Wang Q, Zhou C, Gui L, et al. An ease-off based approach to designing a high-order transmission motion for face-milled spiral bevel gears[J]. International Journal of Vehicle Design, 2019, 81(3/4): 241-252.
5 Shih Y P. A novel ease-off flank modification methodology for spiral bevel and hypoid gears[J]. Mechanism & Machine Theory, 2010, 45(8): 1108-1124.
6 Peng X L, Zhang L, Fang Z D. Manufacturing process for a face gear drive with local bearing contact and controllable unloaded meshing performance based on ease-off surface modification[J]. Journal of Mechanical Design, 2016, 138(4): No.043302.
7 Fan Q. Ease-Off and Application in Tooth Contact Analysis for Face-Milled and Face-Hobbed Spiral Bevel and Hypoid Gears[M]. Berlin: Springer International Publishing, 2016.
8 聂少武, 唐思成, 黄菊花, 等. 基于刀倾法的弧齿锥齿轮齿面失配啮合分析[J]. 机械传动, 2019, 43(9): 96-102.
Nie Shao-wu, Tang Si-cheng, Huang Ju-hua, et al. Analysis of tooth surface mismatch meshing of spiral bevel gear based on cutter tilt method[J]. Mechanical Transmission, 2019, 43(9): 96-102.
9 聂少武, 邓静, 邓效忠, 等. 基于齿面Ease off拓扑的弧齿锥齿轮齿面偏差等效修正方法[J]. 中国机械工程, 2017, 28(20): 2434-2440.
Nie Shao-wu, Deng Jing, Deng Xiao-zhong, et al. Equivalent correction method for tooth surface deviation of spiral bevel gears based on ease off topology[J]. China Mechanical Engineering, 2017, 28(20): 2434-2440.
10 曹雪梅, 邓效忠, 聂少武. 基于共轭齿面修正的航空弧齿锥齿轮高阶传动误差齿面拓扑结构设计[J]. 航空动力学报, 2015, 30(1): 195-200.
Cao Xue-mei, Deng Xiao-zhong, Nie Shao-wu. Topological structure design of aeronautical spiral bevel gear high order transmission error based on conjugate tooth surface modification[J]. Journal of Aerospace Power, 2015, 30(1): 195-200.
11 聂少武, 邓静, 邓效忠, 等. 弧齿锥齿轮齿面拓扑修形及加工参数计算[J]. 航空动力学报, 2017, 32(08): 2009-2016.
Nie Shao-wu, Deng Jing, Deng Xiao-zhong, et al. Topological modification and machining parameters calculation of spiral bevel gears[J]. Journal of Aerospace Power, 2017, 32(8): 2009-2016.
12 聂少武, 蒋闯, 邓效忠, 等. Ease-off拓扑修正的准双曲面齿轮齿面修形方法[J]. 中国机械工程, 2019, 30(22): 2709-2715, 2740.
Nie Shao-wu, Jiang Chuang, Deng Xiao-zhong, et al. Tooth surface modification method for hypoid gears with ease-off topology modification[J]. China Mechanical Engineering, 2019, 30(22): 2709-2715, 2740.
13 Cinelli C, Hazlett C. Making sense of sensitivity: extending omitted variable bias[J]. Journal of the Royal Statistical Society Series B, 2020, 82(1): 39-67.
14 Deb K, Pratap A, Agarwal S, et al. A fast and elitist multi-objective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
15 Srinivas N, Deb K. Multi-objective function optimization using non-dominated sorting genetic algorithms[J]. Evolutionary Computation, 1994, 2(3): 1301-1308.
[1] Xiao ZHOU,Yi-jie LIANG,Zhong-xuan XI,Yu-tao WANG. Welding deformation and compensation method of B-pillar in body-in-white [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2212-2218.
[2] Xin CHEN,Guan-chen ZHANG,Kang-ming ZHAO,Jia-ning WANG,Li-fei YANG,De-rong SITU. Influence of lap welds on the lightweight design of welded aluminum structures [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1282-1288.
[3] Hai-bo LONG,Jia-qi YANG,Liang YIN,Xue-yu ZHAO,Zi-quan XIANG. Multi-objective decision-making on emergency material distribution under uncertain demand based on robust optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1078-1084.
[4] Ying HE,Jun-song FAN,Wei WANG,Geng SUN,Yan-heng LIU. Joint optimization of secure communication and trajectory planning in unmanned aerial vehicle air⁃to⁃ground [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 913-922.
[5] Bai-cang GUO,Guo-feng LUO,Li-sheng JIN,Xian-yi XIE,Dong-xian SUN. Construction method of cut-in scenario library for automatic driving virtual tests [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(11): 3130-3140.
[6] Han-wu LIU,Yu-long LEI,Xiao-feng YIN,Yao FU,Xing-zhong LI. Multi⁃point control strategy optimization for auxiliary power unit of range⁃extended electric vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1741-1750.
[7] Zhao-ming CHEN,Jin-song ZOU,Wei WANG,Ming-quan SHI. Multi-objective optimization of casting-forging dynamic forming based on improved particle swarm neural network and finite element analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1524-1533.
[8] Yong-jie MA,Min CHEN. Dynamic multi⁃objective optimization algorithm based on Kalman filter prediction strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1442-1458.
[9] Xing-tao LIU,Xiao-jian LIU,Ji WU,Yao HE,Xin-tian LIU. State of health estimation method for lithium⁃ion battery based on curve compression and extreme gradient boosting [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1273-1280.
[10] Han HUANG,Qing-hao YAN,Zhi-xin XIANG,Xin-tao YANG,Jin-bao CHEN,Shu-cai XU. Crashworthiness investigation and optimization of bionic multi⁃cell tube based on shrimp chela [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 716-724.
[11] Bin-xiang JIANG,Tong-tong JIANG,Yong-lei WANG. Optimization of consensus algorithm for drug detection block chain based on cultural genetic algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 684-692.
[12] Li-jie ZHANG,Xi-ta A,Xiao TIAN,Wen LI. Multi⁃objective optimization design of accelerated degradation test based on Gamma process [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 361-367.
[13] Xing-tao LIU,Si-yuan LIN,Ji WU,Yao HE,Xin-tian LIU. Regenerative braking optimization strategy considering battery state of power [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(12): 2796-2805.
[14] Bao-feng SUN,Xin-xin REN,Zai-si ZHENG,Guo-yi Li. Multi⁃objective flow shop optimal scheduling considering worker's load [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 900-909.
[15] Bing-hai ZHOU,Zhao-xu HE. Static semi⁃kitting strategy⁃based multi⁃objective just⁃in⁃time material distribution scheduling [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 910-916.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!