Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (11): 3244-3254.doi: 10.13229/j.cnki.jdxbgxb.20230073

Previous Articles    

Evaluation of high-temperature rheological properties of asphalt mastic and its filler stiffening effect

Song LI1,2(),Xing-xing SHI1,3,Chun-di SI1,2,Ji-wang JIANG4,Bin-shuo BAO5   

  1. 1.School of Traffic and Transportation,Shijiazhuang Tiedao University,Shijiazhuang 050043,China
    2.State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures,Shijiazhuang Tiedao University,Shijiazhuang 050043,China
    3.School of Civil Engineering,Shijiazhuang Tiedao University,Shijiazhuang 050043,China
    4.School of Transportation,Southeast University,Nanjing 211102,China
    5.School of Management,Shijiazhuang Tiedao University,Shijiazhuang 050043,China
  • Received:2023-01-28 Online:2024-11-01 Published:2025-04-24

Abstract:

In order to evaluate the effect of filler particles on the properties of asphalt mastic, its high-temperature rheological performance of asphalt mastic is investigated by using a modified multiple stress creep recovery (MSCR) test. The difference in Jnr values between an asphalt binder and its corresponding asphalt mastic is proposed as an index to evaluate the filler stiffening effect in asphalt mastic quantitatively. The results showed that the filler stiffening effect was highly related with the type of asphalt binder. For the SBS-modified asphalt mastic, the addition of mineral filler tends to stiffen the binder until a critical filler content where any further addition of filler would not yield any stiffening effect in the resulting asphalt mastic. It was found that the critical filler contents can be regarded as appropriate filler content for the SBS-modified mastic. It was also found that the critical filler contents can be regarded as appropriate filler content for the SBS-modified mastic and they are found to be 120% and 100% of asphalt binder by mass for the asphalt mastics made by modified binders with 3.5% and 4.0% SBS respectively. Multiple linear regression modelsfor quantifying the filler stiffening effect are derived and the effect of creep stress, SBS content and filler content on filler stiffening is discussed.

Key words: pavement engineering, asphalt mastic, high-temperature rheological properties, filler stiffening effect, appropriate filler content, multiple stress creep recovery test

CLC Number: 

  • U416

Table 1

Performance of asphalt binders"

技术指标沥青种类
基质沥青SBS改性沥青-ⅠSBS改性沥青-Ⅱ
SBS含量/%03.54.0
软化点/°C476576
延度/cm(5 cm/min, 5 ℃)-5043
延度/cm(5 cm/min, 15 ℃)60--
针入度(0.1 mm, 100 g, 15 ℃, 5 s)252121
针入度(0.1 mm, 100 g, 25 ℃, 5 s)705254
针入度(0.1 mm, 100 g, 30 ℃, 5 s)1258786
针入度指数-1.004 5-0.228 0-0.115 3
PG高温分级PG 64-××PG 70-××PG 76-××

Fig.1

Framework of MSCR test for asphalt mastic"

Fig.2

Illustration of strain-time relationship for asphalt mastic at one creep stress level of the MSCR test"

Fig.3

Jnr values for NM with different filler contents"

Fig.4

Jnr values for 3.5M and 4.0M with different filler contents and creep stresses"

Fig.5

ΔJnr results of different asphalt mastics"

Fig.6

Linear regression of Ⅰ and Ⅱ phases of 3.5M and 4.0M"

Table 2

Results of linear model for Ⅰ and Ⅱ phases of SBS-modified mastics"

沥青

胶浆

应力

/kPa

模型模型

转折点

矿粉掺量/%

转折点矿粉掺量

平均值/%

Ⅰ阶段R2Ⅱ阶段R2
3.5M25.6y=0.786 6x+0.315 30.993y=0.142 7x+1.078 80.980118.57124.84
12.8y=0.510 9x+0.226 10.983y=0.064 3x+0.786 40.830125.46
6.4y=0.282 2x+0.316 00.922y=0.013 1x+0.661 60.845128.43
3.2y=0.119 8x+0.387 50.958y=0.002 9x+0.531 60.839123.27
0.1y=0.025 4x+0.342 60.800y=0.001 5x+0.373 30.920128.45
4.0M25.6y=1.006 6x-0.379 50.999y=0.148 8x+0.503 70.839102.96102.30
12.8y=0.615 2x-0.210 60.976y=0.073 6x+0.360 00.778105.35
6.4y=0.279 7x+0.033 40.990y=0.017 1x+0.304 30.732103.16
3.2y=0.098 5x+0.166 30.996y=0.005 3x+0.261 60.729102.25
0.1y=0.033 1x+0.146 40.974y=0.002 0x+0.176 80.79197.75

Fig.7

Fitting results of the multiple linear regression models"

1 You T, Kim Y R, Rami K Z, et al. Multiscale modeling of asphaltic pavements: comparison with field performance and parametric analysis of design variables[J]. Journal of Transportation Engineering, Part B: Pavements, 2018, 144(2): No.04018012.
2 董伟智, 张爽, 朱福. 基于可拓层次分析法的沥青混合料路用性能评价[J]. 吉林大学学报: 工学版, 2021, 51(6): 2137-2143.
Dong Wei-zhi, Zhang Shuang, Zhu Fu. Evaluation of pavement performance of asphalt mixture based on extension analytic hierarchy process[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(6): 2137-2143.
3 Guo M, Bhasin A, Tan Y. Effect of mineral fillers adsorption on rheological and chemical properties of asphalt binder[J]. Construction and Building Materials, 2017, 141: 152-159.
4 Underwood B S, Kim Y R. Nonlinear viscoelastic analysis of asphalt cement and asphalt mastics[J]. International Journal of Pavement Engineering, 2014, 16(6): 510-529.
5 李震南, 申爱琴, 郭寅川, 等. 玄武岩纤维沥青胶浆及混合料的低温性能关联性[J]. 建筑材料学报, 2021, 24(1): 146-152.
Li Zhen-nan, Shen Ai-qin, Guo Yin-chuan, et al. Low temperature performance correlation of basalt fiber asphalt mortar and mixture[J]. Journal of Building Materials, 2021, 24(1): 146-152.
6 Diab A, You Z. Linear and nonlinear rheological properties of bituminous mastics under large amplitude oscillatory shear testing[J]. Journal of Materials in Civil Engineering, 2018, 30(3): No.04017303.
7 李松. 沥青混合料高温蠕变性能的多尺度研究[D]. 南京: 东南大学交通学院, 2020.
Li Song. Multi-scale study on creep property of asphalt mixture at high temperature[D]. Nanjing: School of Transportation,Southeast University, 2020.
8 詹小丽, 张肖宁, 王端宜, 等. 基于DMA方法的沥青胶浆微观结构[J]. 吉林大学学报: 工学版, 2009, 39(4): 916-920.
Zhan Xiao-li, Zhang Xiao-ning, Wang Duan-yi, et al. Microstructure of asphalt mastic using dynamic mechanical analysis[J]. Journal of Jilin University (Engineering and Technology Edition), 2009, 39(4): 916-920.
9 Cheng Y, Tao J, Jiao Y, et al. Influence of the properties of filler on high and medium temperature performances of asphalt mastic[J]. Construction and Building Materials, 2016, 118: 268-275.
10 Zhang J, Liu G, Hu Z, et al. Effects of temperature and loading frequency on asphalt and filler interaction ability[J]. Construction and Building Materials, 2016, 124: 1028-1037.
11 付军, 熊定邦, 李忠杰, 等. 沥青混合料界面区微米划痕试验与参数分析[J]. 建筑材料学报, 2023, 26(1): 78-84.
Fu Jun, Xiong Ding-bang, Li Zhong-jie, et al. Micro- scratch test and parameter analysis of asphalt mixture interfacial transition zone[J]. Journal of Building Materials, 2023, 26(1): 78-84.
12 熊锐, 乔宁, 褚辞, 等. 掺盐沥青胶浆低温流变及粘附特性[J]. 吉林大学学报: 工学版, 2020, 50(1): 183-190.
Xiong Rui, Qiao Ning, Chu Ci, et al. Investigation on low-temperature rheology and adhesion properties of salt-doped asphalt mortar[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(1): 183-190.
13 Underwood B S, Kim Y R. Microstructural investigation of asphalt concrete for performing multiscale experimental studies[J]. International Journal of Pavement Engineering, 2013, 14(5): 498-516.
14 Wang H, Liu X, Apostolidis P, et al. Investigating the high-temperature and low-temperature performance of warm crumb rubber–modified bituminous binders using rheological tests[J]. Journal of Transportation Engineering, Part B: Pavements, 2021, 147(4): No.04021067.
15 Vignali V, Mazzotta F, Sangiorgi C, et al. Rheological and 3D DEM characterization of potential rutting of cold bituminous mastics[J]. Construction and Building Materials, 2014, 73: 339-349.
16 Li Q, Li G, Ma X, et al. Linear viscoelastic properties of warm-mix recycled asphalt binder, mastic, and fine aggregate matrix under different aging levels[J]. Construction and Building Materials, 2018, 192: 99-109.
17 王志臣, 孙雅珍, 桑海军, 等. 沥青与矿粉的交互作用评价及影响机理分析[J]. 沈阳建筑大学学报: 自然科学版, 2023, 39(2): 339-347.
Wang Zhi-chen, Sun Ya-zhen, Sang Hai-jun, et al. Evaluation of the interaction between asphalt and mineral powder and analysis of the influence mechanism[J]. Journal of Shenyang University of Architecture (Natural Science Edition), 2023, 39(2): 339-347.
18 Domingos M D I, Faxina A L. Susceptibility of asphalt binders to rutting: literature review[J]. Journal of Materials in Civil Engineering, 2016, 28(2): No.04015134.
19 Do N D, Liao M C, Mamuye Y, et al. Characteristics of alkali-activated slag filler and its effects on rheology of asphalt mastic[J]. Journal of Materials in Civil Engineering, 2023, 35(4): No.04023003.
20 Li S, Ni F, Dong Q, et al. Effect of filler in asphalt mastic on rheological behaviour and susceptibility to rutting[J]. International Journal of Pavement Engineering, 2021, 22(1): 87-96.
21 Tan Y, Li Z, Zhang X, et al. Research on high- and low-temperature properties of asphalt-mineral filler mastic[J]. Journal of Materials in Civil Engineering, 2010, 22(8): 811-819.
22 Tabatabaee N, Tabatabaee H A. Multiple stress creep and recovery and time sweep fatigue tests: crumb rubber modified binder and mixture performance[J]. Transportation Research Record, 2010, 2180(1): 67-74.
23 郭咏梅, 许丽, 吴亮, 等. 基于MSCR试验的改性沥青高温性能评价[J]. 建筑材料学报, 2018, 21(1): 154-158.
Guo Yong-mei, Xu Li, Wu Liang, et al. High temperature performance evaluation of modified asphalt based on multipe stress creep recover test[J]. Journal of Building Materials, 2018, 21(1): 154-158.
24 罗蓉, 许苑, 刘涵奇, 等. DCLR改性沥青的流变力学性质[J]. 中国公路学报, 2018, 31(6): 165-171.
Luo Rong, Xu Yuan, Liu Han-qi, et al. Rheological mechanical properties of DCLR-modified asphalt binders[J]. China Journal of Highway and Transport, 2018, 31(6): 165-171.
25 Angelo J A. The relationship of the MSCR test to rutting[J]. Road Materials and Pavement Design, 2011, 10(s1): 61-80.
26 Domingos M, Faxina A L. Literature review of the multiple stress creep and recovery, performance-related test[J]. Journal of Transportation Engineering, Part B: Pavements, 2021, 147(1): No.03121001.
27 Liao M C, Airey G, Chen J S. Mechanical properties of filler-asphalt mastics[J]. International Journal of Pavement Research and Technology, 2013, 6(5): 576-581.
28 郑传峰, 冯玉鹏, 郭学东, 等. 粉胶比对沥青胶浆低温黏结强度的影响[J]. 吉林大学学报: 工学版, 2016, 46(2): 426-431.
Zheng Chuan-feng, Feng Yu-peng, Guo Xue-dong, et al. Effect of filler-to-bitumen ratio on low-temperature cohesive strength of asphalt mortar[J]. Journal of Jilin University (Engineering and Technology Edition), 2016, 46(2): 426-431.
29 张亚刚, 林梅, 薛瑛, 等. 基于灰熵关联的沥青胶浆高低温性能研究[J]. 公路, 2023, 68(1): 345-348.
Zhang Ya-gang, Lin Mei, Xue Ying, et al. Research on high and low temperature performance of asphalt mastic based on ash-entropy correlation[J]. Highways, 2023, 68(1): 345-348.
30 Chen M, Javilla B, Hong W, et al. Rheological and interaction analysis of asphalt binder, mastic and mortar[J]. Materials, 2019, 12(1): 128-150.
31 Cardone F, Frigio F, Ferrotti G, et al. Influence of mineral fillers on the rheological response of polymer-modified bitumens and mastics[J]. Journal of Traffic and Transportation Engineering, 2015, 2(6): 373-381.
32 王志臣, 郭乃胜, 赵颖华, 等. 基于细观力学的沥青胶浆动态剪切模量预测[J]. 吉林大学学报: 工学版, 2017, 47(2): 459-467.
Wang Zhi-chen, Guo Nai-sheng, Zhao Ying-hua, et al. Dynamic shear modulus prediction of asphalt mastic based on micromechanics[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(2): 459-467.
33 Anderson D, Bahia H, Dongre R. Rheological Properties of Mineral Filler-asphalt Mastics and its Importance to Pavement Performance[M]. West Conhawken: ASTM International, 1992.
34 Qiu H, Tan X, Shi S, et al. Influence of filler-bitumen ratio on performance of modified asphalt mortar by additive[J]. Journal of Modern Transportation, 2013, 21(1): 40-46.
35 Underwood B S, Kim Y R. Experimental investigation into the multiscale behaviour of asphalt concrete[J]. International Journal of Pavement Engineering, 2011, 12(4): 357-370.
36 Wang H, Alqadi I, Faheem A, et al. Effect of mineral filler characteristics on asphalt mastic and mixture rutting potential[J]. Transportation Research Record: Journal of the Transportation Research Board, 2011, 2: 33-39.
37 Hajikarimi P, Fakhari T F, Moghadas N F, et al. Mechanical behavior of polymer-modified bituminous mastics: experimental approach[J]. Journal of Materials in Civil Engineering, 2018, 31(1): No.04018337.
38 交通部公路科学研究院. 公路工程沥青及沥青混合料试验规程[M]. 北京: 人民交通出版社, 2011.
39 Zeng M, Wu C. Effects of type and content of mineral filler on viscosity of asphalt mastic and mixing and compaction temperatures of asphalt mixture[J]. Transportation Research Record: Journal of the Transportation Research Board, 2008, 2051(1): 31-40.
40 刘安刚, 周庆福, 胡义成, 等. 基于MSCR与测力延度试验的阻燃改性沥青高低温性能评价[J]. 武汉理工大学学报: 交通科学与工程版, 2022, 46(4): 713-717.
Liu An-gang, Zhou Qing-fu, Hu Yi-cheng, et al. Evaluation of high and low temperature performance of flame-retardant modified asphalt based on MSCR and force ductility test[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering Edition), 2022, 46(4): 713-717.
[1] Ya-zhen SUN,Bo-xin XUE,Yan SUN,Zhi-chen WANG,Jia-wei PAN. Mesoscale simulation of cracking behavior of asphalt mixture considering heterogeneity [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1708-1718.
[2] WANG Zhi-chen, GUO Nai-sheng, ZHAO Ying-hua, CHEN Zhong-da. Dynamic shear modulus prediction of asphalt mastic based on micromechanics [J]. 吉林大学学报(工学版), 2017, 47(2): 459-467.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!