Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (6): 1708-1718.doi: 10.13229/j.cnki.jdxbgxb.20220876

Previous Articles    

Mesoscale simulation of cracking behavior of asphalt mixture considering heterogeneity

Ya-zhen SUN(),Bo-xin XUE,Yan SUN,Zhi-chen WANG,Jia-wei PAN   

  1. School of Transportation and Geomatics Engineering,Shenyang Jianzhu University,Shenyang 110168,China
  • Received:2022-07-12 Online:2024-06-01 Published:2024-07-23

Abstract:

To explore the influence of the internal heterogeneity of asphalt mixture on its cracking behavior, the required parameters for the finite element model were obtained through laboratory tests. The aggregates were randomly placed using plug-ins, and cohesion units were inserted at the aggregate-mortar interface and between asphalt mortar units, respectively. Thus, the entire process of crack initiation, propagation, and failure in asphalt mixture was simulated based on the cohesive zone model. The extent to which the physico-mechanical properties of aggregates and the interface adhesion influence the tensile cracking resistance of asphalt mixture was discussed. The research results provide theoretical and data support for the design of asphalt mixture.

Key words: pavement engineering, asphalt mixtures, mesoscale, cohesive zone model, cracking behavior, heterogeneity

CLC Number: 

  • U416.2

Fig.1

Die and drawing fixture"

Fig.2

Direct shear test of asphalt mortar"

Fig.3

Uniaxial tension equipment and traction test"

Table 1

Design of the AC-13 mixture ratio"

材料筛孔尺寸/mm
1613.29.54.752.361.180.50.30.150.075
沥青混合料1009576.5533726.51913.5105
沥青砂浆10010010010069.649.835.725.418.89.4

Fig.4

Fitting curve of the stress-displacement materials in meso-scale"

Table 2

Numerical simulation parameters of constituent"

沥青砂浆骨料骨料-砂浆界面
弹性模量E /MPa20055 000
泊松比0.30.25
抗拉强度/MPa1.600.23
抗剪强度/MPa1.34
拉伸刚度Knn/[1012(Pa·m-1)]1.0361.332
剪切刚度Ktt/[1011(Pa·m-1)]0.847
破坏位移U/mm1.8251.7

Fig.5

Schematic diagram of mixture cracking"

Fig.6

Bilinear cohesive force model"

Fig.7

Schematic diagram of finite element model"

Fig.8

Circular aggregate"

Fig.9

Oval aggregate"

Fig.10

Polygon aggregate"

Fig.11

Irregular aggregate"

Fig.12

Stress distribution during single crack propagation"

Fig.13

Stress distribution during double crack propagation"

Fig.14

Load displacement curves of different aggregate distributions"

Fig.15

Load displacement curves of different aggregate shapes"

Table 3

AC-13 asphalt mixture grading upper limit and lower limit"

参数筛孔尺寸/mm
1613.29.54.752.361.180.50.30.150.075
级配上限100100856850382820155
级配下限100906838241510753

Fig.16

Fracture propagation diagram of the upper and lower limit distribution model of AC-13 gradation"

Fig.17

Load-displacement curve under differentcoarse aggregate content"

Fig.18

Diagram of ultimate tensile strength corresponding to different interfacial strength"

Fig.19

Fracture propagation of different interfacestrengths"

1 赵延庆,谭忆秋,王国忠,等. 黏弹性对沥青路面疲劳开裂的影响[J]. 吉林大学学报:工学版, 2010, 40(3): 683-687.
Zhao Yan-qing, Tan Yi-qiu, Wang Guo-zhong, et al. Effect of viscoelasticity on fatigue cracking of asphalt pavement[J]. Journal of Jilin University (Engineering and Technology Edition), 2010, 40(3): 683-687.
2 马泽欣,刘黎萍,孙立军. 基于加速加载的在役沥青混合料 损伤与疲劳性能[J]. 吉林大学学报:工学版, 2019, 49(2): 384-391.
Ma Ze-xin, Liu Li-ping, Sun Li-jun. Damage and failure performance of in-service asphalt mixture based on accelerated loading test[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(2): 384-391.
3 孙雅珍,郑直,黄伟明,等. 基于状态空间法的含裂缝水泥路面结构分[J].吉林大学学报:工学版, 2023, 53(1): 188-196.
Sun Ya-zhen, Zheng Zhi, Huang Wei-ming, et al. Structural analysis of cement pavement with cracks based on state⁃space method[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(1): 188-196.
4 Dong Z J, Gong X B, Zhao L D, et al. Mesostructural damage simulation of asphalt mixture using microscopic interface contact models[J]. Construction and Building Materials, 2014, 53: 665-673.
5 Qiu X, Xiao S L, Yang Q, et al. Meso-scale analysis on shear failure characteristics of asphalt–aggregate interface[J]. Materials and Structures, 2017, 50(5): 1-14.
6 孙艳丽, 邹桢, 崔长青, 等. ICF掺合料对混凝土抗压性能及微观结构的影响[J].沈阳建筑大学学报: 自然科学版, 2023, 39(1): 104-111.
Sun Yan-li, Zou Zhen, Cui Chan-qing, et al. Effect of ICF admixture on compressive properties and microstructure of concrete[J]. Journal of Shenyang Jianzhu University (Natural Science), 2023, 39(1): 104-111. .
7 Ziaei-Rad V, Nouri N, Ziaei-Rad S, et al. A numerical study on mechanical performance of asphalt mixture using a meso-scale finite element model[J]. Finite Elements in Analysis and Design, 2012, 57: 81-91.
8 谷凡, 王凯, 包忠彬, 等. 聚乙烯醇(PVA)纤维增强水泥基复合材料单纤维拔出细观机理研究[J]. 沈阳建筑大学学报: 自然科学版, 2023, 39(6): 1092-1099.
Gu Fan, Wang Kai, Bao Zhong-bin, et al. Micro-mechanism study on the single fiber pullout of PVA engineered cementitious composite[J]. Journal of Shenyang Jianzhu University (Natural Science), 2023, 39(6): 1092-1099.
9 Shi L W, Wang D Y, Xiao X, et al. Meso-structural characteristics of asphalt mixture main skeleton based on meso-scale analysis[J]. Construction and Building Materials, 2020, 232: 1-12.
10 王志臣, 孙雅珍, 桑海军, 等. 沥青与矿粉的交互作用评价及影响机理分析[J]. 沈阳建筑大学学报: 自然科学版), 2023, 39(2): 339-347.
Wang Zhi-chen, Sun Ya-zhen, Sang Hai-jun, et al. Evaluation of the interaction between asphalt and mineral powder and analysis of its influence mechanism[J]. Journal of Shenyang Jianzhu University (Natural Science), 2023, 39(2): 339-347.
11 Zhao Y J, Ni F J, Zhou L, et al. Heterogeneous fracture simulation of asphalt mixture under SCB test with cohesive crack model[J]. Road Materials and Pavement Design, 2017, 18(6): 1411-1422.
12 Chen X Q, Yuan J W, Dong Q, et al. Meso-scale cracking behavior of cement treated base material[J]. Construction and Building Materials, 2020, 239: 1-12.
13 熊学玉,肖启晟. 基于内聚力模型的混凝土细观拉压统一数值模拟方法[J]. 水利学报, 2019, 50(4): 448-462.
Xiong Xue-yu, Xiao Qi-sheng. A unified meso-scale simulation method for concrete under both tension and compression based on cohesive zone model[J]. Journal of Hydraulic Engineering, 2019, 50(4): 448-462.
14 梁何浩. 基于细观力学性能的抗裂型沥青混合料研究[D]. 广州: 华南理工大学土木与交通工程学院, 2019.
Liang He-hao. Investigation of anti-cracking asphalt mixture based on mesomechanical property[D]. Guangzhou: School of Civil Engineering and Transportation, South China University of Technology, 2019.
15 Kim H, Buttlar W G. Finite element cohesive fracture modeling of airport pavements at low temperatures[J]. Cold Regions Science & Technology, 2009, 57(2/3): 123-130.
16 Yin A Y, Yang X H, Yang Z J. 2D and 3D fracture modeling of asphalt mixture with randomly distributed aggregates and embedded cohesive cracks[J]. Procedia IUTAM, 2013, 6: 114-122
17 Wang H, Wang J, Chen J Q. Micromechanical analysis of asphalt mixture fracture with adhesive and cohesive failure[J]. Engineering Fracture Mechanics, 2014, 132: 104-119.
18 郭永祥. 半刚性基层沥青混凝土路面病害分析与路面结构设计参数研究[D]. 长沙:中南大学土木工程学院, 2012.
Guo Yong-xiang. Disease analysis and structural design parameters studies of semi-rigid base asphalt concrete pavement[D]. Changsha: School of Civil Engineering, Central South University, 2012.
19 牛冬瑜. 基于细观力学的沥青砂浆及骨架结构沥青混合料性能研究[D]. 西安:长安大学材料工程与科学学院, 2015.
Niu Dong-yu. Study on performance of asphalt mortar and framework structured asphalt mixture based on meso-mechanics[D]. Xi´an: School of Materials Engineering and Science, Chang 'an University, 2015.
20 尹安毅. 沥青混合料开裂破坏行为的细观尺度模拟[D]. 武汉:华中科技大学土木工程与力学学院, 2013.
Yin An-yi. Mesoscale fracture simulation of asphalt mixture considering material heterogeneity[D]. Wuhan: School of Civil Engineering and Mechanics, Huazhong University of Science and Technology, 2013.
21 万蕾. 基于内聚力模型和三维离散元法沥青混合料劈裂试验研究[D]. 杭州:浙江大学建筑工程学院, 2016.
Wan Lei. Study on asphalt mixture splitting test using cohesive zone model and three-dimensional discrete element method[D]. Hangzhou: School of Civil Engineering and Architecture, Zhejiang University, 2016.
22 张争奇,李平,王秉纲. 纤维和矿粉对沥青胶浆性能的影响[J]. 长安大学学报:自然科学版, 2005, 25(5): 15-18.
Zhang Zheng-qi, Li Ping, Wang Bing-gang. Effect of fiber and mineral filler on asphalt mortar performance[J]. Journal of Chang'an University (Natural Science Edition), 2005, 25(5): 15-18.
23 张东,黄晓明,赵永利. 基于内聚力模型的沥青混合料劈裂试验模拟[J].东南大学学报: 自然科学版, 2010, 40(6): 1276-1281.
Zhang Dong, Huang Xiao-ming, Zhao Yong-li. Simulation of indirect tension test of asphalt mixtures based on cohesive zone model[J]. Journal of Southeast University(Natural Science Edition), 2010, 40(6): 1276-1281.
24 林震寰. 沥青混合料低温抗裂性能数值模拟研究[D]. 沈阳: 沈阳建筑大学土木工程学院, 2021.
Lin Zhen-huan. Numerical simulation of low temperature crack resistance of asphalt mixture[D]. Shenyang: School of Civil Engineering, Shenyang Jianzhu University, 2021.
[1] Xiao-kang ZHAO,Zhe HU,Zhen-xing NIU,Jiu-peng ZHANG,Jian-zhong PEI,Yong WEN. Meso-cracking behavior of cement-stabilized macadam materials based on heterogeneous model [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1258-1266.
[2] Lan WU,Le ZHAO,Gen LI. Analysis of merging behavior based on random parameter model with heterogeneity in variances [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 883-889.
[3] Xiao-hua ZHAO,Chang LIU,Hang QI,Ju-shang OU,Ying YAO,Miao GUO,Hai-yi YANG. Influencing factors and heterogeneity analysis of highway traffic accidents [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 987-995.
[4] Nie-yang-zi LIU,Xin RONG,Hong-hai LIU,Qing-hua BIAN,Hai LAN. Mixing power test and viscosity model of asphalt mixture [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(1): 220-225.
[5] Wei-zhi DONG,Shuang ZHANG,Fu ZHU. Evaluation of pavement performance of asphalt mixture based on extension analytic hierarchy process [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2137-2143.
[6] Chao-ying YIN,Chun-fu SHAO,Xiao-quan WANG,Zhi-hua XIONG. Influence of built environment on commuting mode choice considering spatial heterogeneity [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 543-548.
[7] Yong PENG,Hua GAO,Lei WAN,Gui-ying LIU. Numerical simulation of influence factors of splitting strength of asphalt mixtures [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1521-1530.
[8] YANG Li-biao, ZHAO Hong-lin, JIA Min. Neighboring group control channel allocation or cognitive radio Ad Hoc network [J]. 吉林大学学报(工学版), 2016, 46(2): 663-670.
[9] ZHANG Dong, HUANG Xiao-ming, ZHAO Yong-li. Aggregate skeleton composition of stone mastic asphalt and its contact properties [J]. 吉林大学学报(工学版), 2015, 45(2): 394-399.
[10] LI Ji-mei, DU Mei-jie. Information integration algorithm of heterogeneous XBRL financial reporting [J]. 吉林大学学报(工学版), 2012, 42(增刊1): 266-270.
[11] LIU Gui-Xia, TIAN Yuan, ZHENG Ming, LAI Li-Na, ZANG Xue-Bai, ZHOU Chun-Guang. Identification of differentially expressed genes based on metaanalysis [J]. 吉林大学学报(工学版), 2010, 40(05): 1308-1312.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!