Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (3): 888-898.doi: 10.13229/j.cnki.jdxbgxb.20230552

Previous Articles     Next Articles

Evolution of damage to performance of environment⁃friendly salt storage asphalt mixture

Jing-yang YU1,2(),Dong-zhao LI3,Zhi-qing ZHANG1(),Zhen WANG4,Hai-lin SUN5,Hai-ling BU4,Ming-chun LI5   

  1. 1.Beijing Key Laboratory of Traffic Engineering,Beijing University of Technology,Beijing 100124,China
    2.Beijing General Municipal Engineering Design & Research Institute Co. ,Ltd. ,Road Traffic Institute,Beijing 100082
    3.Research Institute of Highway Ministry of Transport,Beijing,100088 China
    4.Beijing Municipal Road & Bridge Building Material Group Co. ,Ltd. ,Beijing 100176,China
    5.CCCC Tunnel Engineering Co. ,Ltd. ,Beijing 100102,China
  • Received:2023-08-04 Online:2025-03-01 Published:2025-05-20
  • Contact: Zhi-qing ZHANG E-mail:yujingyang@emails.bjut.edu.cn;zhangzhiqing@bjut.edu.cn

Abstract:

In order to accurately predict the effect of precipitation and ice condensation on the engineering performance of asphalt mixtures during the service of environmentally friendly salt storage asphalt pavements, the long-term road performance changes of asphalt mixture were studied based on immersion freeze-thaw cycle tests. Based on the theory of life reliability and damage principle, considering the influence of moisture and freeze-thaw cycle on salt storage asphalt mixture, the damage evolution model of asphalt mixture under immersion-freeze-thaw condition was established, and the evolution of engineering performance damage of ordinary asphalt mixture and environmentlly-friendly salt storage asphalt mixture was compared. The experimental results show that with the increase of the number of immersion-freeze-thaw cycles, the porosity of the salt storage asphalt mixture increases obviously, while the performance indexes of splitting strength and dynamic stability decrease obviously, and the variation range of the salt storage asphalt mixture is always greater than that of the ordinary asphalt mixture. According to the model calculation and analysis, under the damage of immersion-freeze-thaw, with the precipitation of snow melting salt, the destruction of environmently-friendly salt storage asphalt mixture is developed from the outside to the inside, and the immersion-freeze-thaw cycle has a more significant effect on the splitting tensile strength of the asphalt mixture, which will affect the pavement performance to a certain extent.

Key words: road engineering, environmentally friendly salt storage asphalt mixture, immersion-freeze-thaw cycle, engineering performance, damage model

CLC Number: 

  • U416

Table 1

Properties of SBS modified asphalt"

试验指标实测值规范值试验方法
针入度(5 s,100 g,25 ℃)/mm6960~80T0604
软化点(R&B)/℃80.5≥75T0606
延度(5 ℃)/cm39≥30T0605
RTFO质量变化/%-0.168≤±1.0T0609
残留针入度比(25 ℃)/%84.1≥60T0604
RTFO残留延度(5 ℃)/cm27≥20T0605

Fig.1

Appearance of salt storage filler"

Table 2

Percentage of asphalt mixture passing through each screen hole"

组别RX替代量/%筛孔尺寸/mm下通过百分率/%
1613.29.54.752.361.180.60.30.150.075
1151009460.229.719.715.913.011.112.210.3
2301009460.229.719.715.913.011.312.59.7
3451009460.229.719.715.913.011.412.69.3
4601009460.229.719.715.913.011.012.88.3

Table 3

Marshall test results of salt storage asphalt mixture"

级配分组蓄盐填料/%相对毛体积密度空隙率/%矿料间隙率/%沥青饱和度/%稳定度/kN流值/mm
规范值3.5~4.5≥1775~85≥6
1152.5073.7817.2678.0113.634.6
2302.5043.9417.2277.1113.064.3
3452.5054.0517.1576.3812.644.0
4602.5084.2117.0975.3611.793.8

Fig.2

Gradation curve of asphalt mixture"

Table 4

Groups of mixture immersion-freeze-thaw"

混合料种类组别浸泡时间/d冻融次数/次

蓄盐沥青

混合料试件

1122
2244
3366
4488
56010

普通沥青混

合料试件

6122
7244
8366
9488
106010

Fig.3

Change of porosity with immersion- freeze-thaw cycle"

Fig.4

Structure of the salt storage filler under the scanning electron microscope"

Fig.5

Comparison of the structure of the salt storage filler before and after the salt release"

Fig.6

Surface morphology of salt storage asphalt mixture under the scanning electron microscope"

Fig.7

Comparison of splitting strength of asphalt mixture under different cycles"

Fig.8

Splitting strength loss rate per unit period of immersion-freeze-thaw cycle"

Table 5

Fitting and predicting results of damage evolution model parameters"

混合料类型性能指标参数相关系数R2实测D10/%预测D10/%相对误差/%
ανλ0

普通沥青

混合料

劈裂强度0.6690.0380.0300.99128.329.23.2
动稳定度0.7340.0150.0190.97425.326.44.4

蓄盐沥青

混合料

劈裂强度0.7570.1410.1060.95649.551.84.6
动稳定度0.7550.0760.0600.98938.839.51.8

Fig.9

Change of DS with immersion-freeze- thaw cycle"

Fig.10

Loss rate per unit period of dynamic stability with the immersion-freeze-thaw cycle"

Fig.11

Simplified model of equal damage gradient G at six surfaces"

1 刘状壮, 沙爱民, 蒋玮. 蓄盐沥青路面研究进展: 盐化物材料、 混合料及其性能与评价[J]. 中国公路学报, 2019, 32(4): 18-31, 72.
Liu Zhuang-zhuang, Sha Ai-min, Jia Wei. Advances in asphalt pavements containing salts: additives, mixtures, performances, and evaluation[J]. China Journal of Highway and Transport, 2019, 32(4): 18-31, 72.
2 张倩, 张旭景, 梁纪, 等. 有机融雪剂对沥青的影响及作用机理[J]. 建筑材料学报, 2021, 24(4): 820-827.
Zhang Qian, Zhang Xu-jing, Liang Ji, et al. Effect of organic snow melting agent on asphalt performance and its mechanism[J]. Journal of Building Materials, 2021, 24(4): 820-827.
3 张争奇, 王志祥, 李志宏, 等. 含盐高湿环境下沥青混合料耐久性[J]. 北京工业大学学报, 2015, 41(9): 1365-1374.
Zhang Zheng-qi, Wang Zhi-xiang, Li Zhi-hong, et al. Durability of asphalt pavement under salty and humid environment[J]. Journal of Beijing University of Technology, 2015, 41(9): 1365-1374.
4 Juli-Gándara L, Vega-Zamanillo Á, Calzada-Pérez M Á, et al. Sodium chloride effect in the mechanical properties of the bituminous mixtures[J]. Cold Regions Science and Technology,2019, 164: No. 102776.
5 Behnam A, Saleh S T. Simultaneous effects of salted water and water flow on asphalt concrete pavement deterioration under freeze-thaw cycles[J]. International Journal of Pavement Engineering, 2014, 15(5): 383-391.
6 龚演, 徐剑, 刘凯, 等. 掺盐化物融雪剂沥青混合料的性能评价[J]. 公路交通科技, 2022, 39(6): 17-24, 34.
Gong Yan, Xu Jian, Liu Kai, et al. Evaluation of performance of asphalt mixture containing salinization-based snow-melting agent[J]. Journal of Highway and Transportation Research and Development, 2022, 39(6): 17-24, 34.
7 李兆生, 谭忆秋. 沥青混合料冻融损伤特性研究[J]. 中国科技论文, 2014, 9(11): 1279-1281.
Li Zhao-sheng, Tan Yi-qiu. Research on asphalt mixture freezing-thawing damage performance[J]. China Sciencepaper, 2014, 9(11): 1279-1281.
8 王文盛. 冻融循环条件下玄武岩纤维增强沥青混合料的损伤特性及细观机理研究[D]. 长春: 吉林大学交通学院, 2020.
Wang Wen-sheng. Research on damage characteristics and mesoscopic mechanism of basalt fiber reinforced asphalt mixture under freeze-thaw cycle conditions[D]. Changchun: College of Transportation, Jilin University, 2020.
9 王军, 白艳君. 盐化物沥青混合料抗冻融循环性能及灰色预测[J]. 中外公路, 2012, 32(5): 249-252.
Wang Jun, Bai Yan-jun. Anti-freeze-thaw cycle performance and grey prediction of salted asphalt mixture[J]. Journal of China & Foreign Highway, 2012, 32(5): 249-252.
10 谢康, 扈慧敏, 周辉. 自融雪沥青混合料配合比设计及路用性能研究[J]. 工程与建设, 2018, 32(1): 94-98.
Xie Kang, Hu Hui-min, Zhou Hui. Study on the design and performance of the mixture ratio design and road[J]. Engineering and Construction, 2018, 32(1): 94-98.
11 张争奇, 唐周鸣, 李杨, 等. 自融雪剂对沥青混合料性能影响研究[J].重庆交通大学学报:自然科学版, 2020, 39(7): 92-99.
Zhang Zheng-qi, Tang Zhou-ming, Li Yang, et al. Effect of self-melting snow agent on performance of asphalt mixture[J]. Journal of Chongqing Jiaotong University(Natural Science), 2020, 39(7): 92-99.
12 吴欣桐, 张志清, 朱江, 等. 盐化物材料中蓄盐载体的选择及最优配合比[J]. 建筑材料学报, 2022, 25(3): 278-284, 293.
Wu Xin-tong, Zhang Zhi-qing, Zhu Jiang, et al. Selection and optimal mix ratio of carrier in anti-freeze materials[J]. Journal of Building Materials, 2022, 25(3): 278-284, 293.
13 张争奇, 罗要飞, 赵富强. 储盐类融雪抑冰材料对沥青混合料性能影响研究进展[J]. 化工进展, 2018, 37(6): 2282-2294.
Zhang Zheng-qi, Luo Yao-fei, Zhao Fu-qiang. Review of research on the effect of salt storage deicing materials on the performance of asphalt mixture[J]. Chemical Industry and Engineering Progress, 2018, 37(6): 2282-2294.
14 吴平, 王选仓. 抗冻型微表处沥青混合料的路用性能及抗冻性能[J]. 北京工业大学学报, 2017, 43(1): 143-149.
Wu Ping, Wang Xuan-cang. Road performance and antifreeze property of natifreeze micro-surfacing asphalt mixture[J]. Journal of Beijing University of Technology, 2017, 43(1): 143-149.
15 张秀, 张丽, 李书芳, 等. 排水性沥青混合料宏观性能与微细观空隙结构研究[J]. 新型建筑材料, 2020, 47(9): 94-98, 142.
Zhang Xiu, Zhang Li, Li Shu-fang, et al. Study on macroscopic properties and microscopic viscosity structure of drainage asphalt mixtures[J]. New Building Materials, 2020, 47(9): 94-98, 142.
16 崔亚楠, 韩吉伟, 冯蕾, 等. 盐冻循环条件下改性沥青微细观结构[J]. 吉林大学学报: 工学版, 2017, 47(2): 452-458.
Cui Ya-nan, Han Ji-wei, Feng Lei, et al. Microstructure of asphalt under salt freezing cycles[J]. Journal of Jinlin University (Engineering and Technology Edition), 2017, 47(2): 452-458.
17 谭忆秋, 赵立东, 蓝碧武, 等. 反复凝冰作用下沥青混合料性能研究[J]. 建筑材料学报, 2011, 14(6): 761-766, 792.
Tan Yi-qiu, Zhao Li-dong, Lan Bi-wu, et al. Research on the performance of asphalt mixture under repeated freezing[J]. Journal of Building Materials, 2011, 14(6): 761-766, 792.
18 陈征. 老化及冻融条件下复合胶粉改性沥青混合料高温性能研究[D]. 呼和浩特: 内蒙古工业大学土木工程学院, 2021.
Chen Zheng. Research on high temperature performance of composite rubber powder modified asphalt mixture under aging and freezing-thawing conditions[D]. Hohhot: College of Civil Engineering, Inner Monglia University of Technology, 2021.
19 郭诗言. 水对沥青混合料永久变形性能的影响研究[D].重庆: 重庆交通大学土木工程学院, 2017.
Guo Shi-yan. Study on the effect of water on permanent deformation of asphalt mixture[D]. Chongqing: College of Civil Engineering, Chongqing Jiaotong University, 2017.
20 关宇刚, 孙伟, 缪昌文. 基于可靠度与损伤理论的混凝土寿命预测模型Ⅰ: 模型阐述与建立[J]. 硅酸盐学报, 2001, 29(6): 530-534.
Guan Yu-gang, Sun Wei, Miao Chang-wen. One service-life prediction model for the concrete based on the reliability and damage theories Ⅰ: narration and establishment of the model[J]. Journal of the Chinese Ceramic Society, 2001, 29 (6):530-534.
21 谭忆秋, 赵立东, 蓝碧武, 等. 沥青混合料冻融损伤模型及寿命预估研究[J]. 公路交通科技, 2011, 28(6): 1-7, 31.
Tan Yi-qiu, Zhao Li-dong, Lan Bi-wu, et al. Research on freeze-thaw damage model and life prediction of asphalt mixture[J]. Journal of Highway and Transportation Research and Development, 2011, 28(6): 1-7, 31.
22 程永春, 余地, 谭国金, 等. 玄武岩纤维沥青混合料的冻融损伤演化规律[J]. 哈尔滨工程大学学报, 2019, 40(3) :518-524.
Cheng Yong-chun, Yu Di, Tan Guo-jin, et al. Evolution on freeze-thaw damage of basalt fiber asphalt mixture[J]. Journal of Harbin Engineering University,2019, 40(3): 518-524.
[1] Jun-peng XU,Chuan-feng ZHENG,Yan-tao DU,Yu-hang WANG,Zheng LU,Wen-jun FAN. Damage effects of water⁃heat⁃force coupling in permeable asphalt mixture in cold region [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(3): 877-887.
[2] Yan-hai YANG,Bai-chuan LI,Ye YANG,Chong-hua WANG,Liang YUE. Aggregate ellipsoidal surface base reconstruction with virtual splitting tests [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 653-663.
[3] Teng-fei NIAN,Zhao HAN,Zhi-qiang WEI,Guo-wei WANG,Jin-guo GE,Ping LI. Mesoscopic numerical modeling method of asphalt mix considering aggregate morphology [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 639-652.
[4] Wan-feng WEI,Ling-yun KONG,Wei-an XUAN,Fan YANG,Peng GUO. Review of characteristics of asphalt foaming and moisture sensitivity of warm mix mixtures [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 20-35.
[5] Feng-chun GUO,Hai-peng BI,Hai-tao WANG,Shu-zheng WU,Hong-yu YANG. Viscoelastic behavior of carbon nano powder modified asphalt based on time-temperature equivalence [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 221-229.
[6] Ya-ning CUI,Chun-di SI,Tao-tao FAN,Fei WANG. Analysis on crack propagation of asphalt bridge deck pavement under water-force coupling action [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1988-1996.
[7] Ying-li GAO,Xiao-lei GU,Mei-jie LIAO,Xin-lang HU,Yu-tong XIE. Rheological properties and modification mechanism of SiO2 aerogel/reactive elastomer terpolymer/Polyphosphoric acid composite modified asphalt [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1978-1987.
[8] Yong-li XU,Xu-lan YANG,Ji-sen ZHOU,Song-han YANG,Ming-gang SUN. Asphalt fume composition of warm mix asphalt and smoke suppression performance of warm mix agent [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1701-1707.
[9] Xiao-kang ZHAO,Zhe HU,Zhen-xing NIU,Jiu-peng ZHANG,Jian-zhong PEI,Yong WEN. Meso-cracking behavior of cement-stabilized macadam materials based on heterogeneous model [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1258-1266.
[10] Tong-tong WAN,Hai-nian WANG,Wen-hua ZHENG,Po-nan FENG,Yu CHEN,Chen ZHANG. Thermal contraction deformation behavior of asphalt mixture overlay with coordination of unbound aggregate layer [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1045-1057.
[11] Bing CHEN,Yang-kun ZHANG,Yang WANG,Sheng-zhe LIU,Jin-yang HAN. Damage parameter identification of laser welded joint shear Gurson⁃Tvergaard⁃Needleman model [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(12): 3468-3477.
[12] Jin XU,Zheng-huan CHEN,Qi-shuo LIAO,Zhan-ji ZHENG,He-shan ZHANG. Mental workload of drivers at high-density interchanges of freeways based on ECG data [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(10): 2807-2818.
[13] Hong-zhou ZHU,Chun-li SU,Nai-peng TANG,Jun-yao WEI,Hong-jun SUN. Sampling and quantitative analysis method of emissions from crumb rubber modified asphalt [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(10): 2922-2929.
[14] Jun CHEN,Zhen-hao SUN,Cheng ZHAO,Xin-yi WU,Jun-peng WANG. Laboratory investigation on cooling effect of multi-layer phase change asphalt concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 180-187.
[15] Nai-peng TANG,Chen-yang XUE,Shao-peng LIU,Hong-zhou ZHU,Rui LI. Review on aging mechanism, characterization and evaluation of crumb rubber modified asphalt [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 22-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!