Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (5): 1588-1594.doi: 10.13229/j.cnki.jdxbgxb.20231358

Previous Articles     Next Articles

Dynamic prediction of bridge coupled extreme stresses produced by temperature and vehicle loads

Xue-ping FAN1,2(),Du YANG2,Jiu-yu LI2,Qi-fan ZHAO2,Yue-fei LIU1,2   

  1. 1.Key Laboratory of Mechanics on Disaster and Environment in Western China of the Ministry of Education,Lanzhou University,Lanzhou 730030,China
    2.School of Civil Engineering and Mechanics,Lanzhou University,Lanzhou 730030,China
  • Received:2023-12-06 Online:2025-05-01 Published:2025-07-18
  • Contact: Xue-ping FAN E-mail:fxp_2004@163.com

Abstract:

Firstly, moving average method is adopted to decouple the coupled extreme stresses produced by temperature and vehicle loads, the low-frequency data after processed by moving average method is the trend item information, the initial data minus the trend item is the vehicle load effect information, and the trend item minus its mean is the temperature load effect information. Secondly, a bivariate Bayesian dynamic linear trend model (BDLTM) is built to predict and analyze low-frequency extreme stress, GRU neural network model is provided to predict and analyze high-frequency extreme stresses. Finally, the dynamic coupled extreme stresses are predicted. The monitoring coupled data from Tianjin Fumin Bridge is provided to illustrate the feasibility and application of the proposed model. The research results of this paper will provide the theoretical foundation for preventive maintenance and decision-making of the service bridges.

Key words: structural engineering, bridge coupled extreme stresses, moving average method, BDLTM-GRU, BDLTM, GRU neural network

CLC Number: 

  • TU39

Fig.1

GRU model unit structure diagram"

Fig.2

Monitoring section of the main beam"

Fig.3

Strain sensor layout about section A"

Table 1

Mean square error of three models"

监测点BDLTM-GRUBDLTMGRU
FBG010740.586 60.665 40.684 8
FBG010760.502 30.540 00.545 5
FBG010770.656 60.743 50.771 3
FBG010780.332 00.386 70.435 1
[1] 樊学平, 吕大刚. 基于 BDNM 的桥梁结构可靠度预测 [J] .哈尔滨工业大学学报, 2014, 46(2): 1-5.
Fan Xue-ping, Da-gang Lyu. Reliability prediction of bridge structures based on BDNM[J]. Journal of Harbin Institute of Technology, 2014, 46(2): 1-5.
[2] 李顺龙. 基于健康监测技术的桥梁结构状态评估和预警方法研究[D]. 哈尔滨:哈尔滨工业大学土木工程学院,2009.
Li Shun-long. Approaches of condition assessment and damage alarming of bridges based on structural health monitoring[D]. Harbin:School of Civil Engineering, Harbin Institute of Technology,2009.
[3] An Y H, Chatzi E, Sim S H, et al. Recent progress and future trends on damage identification methods for bridge structures[J]. Structural Control and Health Monitoring, 2019, 26(10): 2416.
[4] Wan H P, Ren W X. Stochastic model updating utilizing Bayesian approach and Gaussian process model[J]. Mechanical Systems and Signal Processing, 2016, 70: 245-268.
[5] Fan X P, Liu Y F. Use of monitored daily extreme stress data for performance prediction of steel bridges: dynamic linear models and gaussian mixed particle filter[J]. Mechanical Systems and Signal Processing, 2019, 121: 841-855.
[6] 樊学平, 吕大刚. 基于贝叶斯 DLM 的桥梁结构可靠度预测[J]. 铁道学报, 2014, 36(6): 93-98.
Fan Xue-ping, Da-gang Lyu. Reliability prediction of aging bridges based on Bayesian dynamic linear model[J]. Journal of the China Railway Society, 2014, 36(6): 93-98.
[7] 樊学平, 刘月飞, 吕大刚. 桥梁监测数据的动态线性建模与可靠性预测[J]. 同济大学学报: 自然科学版, 2016, 44(7): 1002-1009.
Fan Xue-ping, Liu Yue-fei, Da-gang Lyu. Dynamic linear modeling of bridge monitored data and reliability prediction[J]. Journal of Tongji University (Natural Science), 2016, 44(7): 1002-1009.
[8] 樊学平, 杨光红, 刘月飞. 大跨混凝土桥梁耦合极值应变的混合粒子预测[J]. 哈尔滨工程大学学报, 2021, 42(8): 1167-1175.
Fan Xue-ping, Yang Guang-hong, Liu Yue-fei. Hybrid particle prediction of coupling extreme strain data of long-span concrete bridges[J]. Journal of Harbin Engineering University, 2021, 42(8): 1167-1175.
[9] Petris G, Petrone S, Campagnoli P. Dynamic Linear Models with R[M]. Berlin: Springer Science & Business Media, 2009.
[10] West M, Harrison J. Bayesian Forecasting and Dynamic Models[M]. Berlin: Springer Science & Business Media, 2006.
[11] 樊学平. 基于验证荷载和监测数据的桥梁可靠性修正与贝叶斯预测[D]. 哈尔滨: 哈尔滨工业大学土木工程学院, 2014.
Fan Xue-ping. Reliability updating and Bayesian prediction of bridges based on proof loads and monitoring data[D]. Harbin:School of Civil Engineering, Harbin Institute of Technology,2014.
[12] Cho K, Van M B, Bahdanau D, et al. On the properties of neural machine translation: encoder-decoder approaches[J]. Syntax, Semantics and Structure in Statistical Translation, 2014, 14: 103-111.
[13] 鞠翰文, 邓扬, 李爱群. 基于GRU神经网络的结构异常监测数据修复方法[J]. 振动与冲击, 2023, 42(9): 328-338.
Ju Han-wen, Deng Yang, Li Ai-qun. Restoring method of structural abnormal monitoring data based on GRU neural network[J]. Journal of Vibration and Shock, 2023, 42(9): 328-338.
[1] Sheng-qi MEI,Xiao-dong LIU,Xing-ju WANG,Xu-feng LI,Teng WU,Xiang-xu CHENG. Prediction of high strength concrete creep based on parametric MIC analysis and machine learning algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1595-1603.
[2] Yu ZHOU,Meng LI,Sheng-kui DI,Xian-zeng SHI,Dong CHEN. Analytical solution of thrust influence line of variable section two-hinged arch and application of damage identification [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 664-672.
[3] Yu-dai WANG,Bin WANG,Fu-sheng MIAO,Nan MA. Freezing and expansion response of lined channels under changes in hydrothermal coupling [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 256-268.
[4] Hao JIANG,Zheng-wen ZHAO. Experiment on shear performance of RC beams strengthened with basalt fiber grid cement-based composites [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 211-220.
[5] Fang-fang WEI,Li-ping LI,Qing-peng XU,You-zheng ZHAO,Jing-jing YANG. Experiment on seismic behavior of fire-fired composite shear wall with double steel plates and infill concrete after reinforcement [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 230-244.
[6] Jin-quan ZHAO,Long ZHOU,Yong-gang DING,Rong-ji ZHU. Experiment on anchoring performance of spiral stirrup-corrugated pipe grout splicing [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2484-2494.
[7] Wei-song YANG,An ZHANG,Wei-xiao XU,Hai-sheng LI,Ke DU. Seismic performance of stiffness enhanced metal coupling beam damper [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2469-2483.
[8] Qi-wu YAN,Zhong-liang ZOU. Hybrid algorithm for seismic energy-dissipated structures based on optimal placement of dampers [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2267-2274.
[9] Feng-guo JIANG,Yu-ming ZHOU,Li-li BAI,Shuang LIANG. Improved krill algorithm and its application in structural optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2256-2266.
[10] Guang-tai ZHANG,Cheng-xiao ZHOU,Shi-tuo LIU. Restoring force model of fiber lithium slag concrete column in saline soil environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1944-1957.
[11] Yan-song DIAO,Yi-jian REN,Yuan-qiang YANG,Ling-yun ZHAO,Xiu-li LIU,Yun LIU. Experimental on seismic performance of replaceable splicing steel beam-column joints with friction energy dissipation components [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1643-1656.
[12] Xue-ping FAN,Yue-fei LIU. Bridge extreme stress dynamic prediction based on improved Gaussian mixed particle filter new algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1038-1044.
[13] Yi-fan LIU,Zhi-wei MIAO,Chen SHEN,Xiang-dong GENG. Evaluation of mechanical properties of non-uniform corroded rebars based on Monte Carlo method [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1007-1015.
[14] Xue-ping FAN,Heng ZHOU,Yue-fei LIU. Time⁃variant reliability analysis of bridge members based on Gaussian Copula⁃Bayesian dynamic models [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 485-493.
[15] Hai-xu YANG,Yue GUO,Hai-biao WANG,Yi HU. Bending performance of cold-formed thin-walled steel-glulam composite beams [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(12): 3513-3525.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CUI Yan, ZHANG Wan-xi, LIU Fu-chang, ZHANG Cheng-yi, LI Qin. Preparation of Waterborne Block Type Nanostructural[J]. 吉林大学学报(工学版), 2005, 35(05): 482 -0485 .
[2] Xu Guan, Su Jian, Chen Rong, Zhang Li-bin, Su Li-li . Error analysis of measurement model and calibration method for automobile caster[J]. 吉林大学学报(工学版), 2008, 38(01): 17 -020 .
[3] YU Fa-Xin1,2, SUN Lin-lin2 . Error analysis of pico-satellite attitude angle measurement based on sun vector[J]. 吉林大学学报(工学版), 2008, 38(04): 976 -980 .
[4] SHI Gang,SHI Yong-jiu,WANG Yuan-qing . Analysis on overall buckling behaviour of ultra-high strength steel columns by ANSYS[J]. 吉林大学学报(工学版), 2009, 39(01): 113 -118 .
[5] Shi Gang, Shi Yong-jiu, Wang Yuan-qing. Calculational method of shear deformation for beam-to-column connection panel zone in steel frames[J]. 吉林大学学报(工学版), 2006, 36(04): 462 -466 .
[6] He Li-qiao,Gao Yan,Wang Guo-guang . Calibration method for CCD laser diffraction filament
diameter measurement system
[J]. 吉林大学学报(工学版), 2008, 38(增刊): 182 -0184 .
[7] WABG Mao-lin, YAN Dong, SUN Xiao-dong. Fuzzy sliding mode control of a class system[J]. 吉林大学学报(工学版), 2011, 41(增刊1): 245 -248 .
[8] ZHOU Wen-Ya, YANG Di, LIANG Xin-Gang. Using Gauss pseudospectral method to optimize aeroassisted orbit transfer[J]. 吉林大学学报(工学版), 2010, 40(05): 1454 -1459 .
[9] GUO Zi-zheng, CHEN Chong-shuang, YAN Wei, SONG Wei, ZHANG Zhi-yong. Assessment method for driving threat perception[J]. 吉林大学学报(工学版), 2012, 42(01): 46 -50 .
[10] LIU Jing-jing, SUN Yong-hai, DING Jian-feng, SUN Zhong-lei. Optimization of sensor array for identification of corn juice[J]. 吉林大学学报(工学版), 2013, 43(02): 538 -543 .