Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (5): 1595-1603.doi: 10.13229/j.cnki.jdxbgxb.20230814

Previous Articles     Next Articles

Prediction of high strength concrete creep based on parametric MIC analysis and machine learning algorithm

Sheng-qi MEI1,2(),Xiao-dong LIU2,Xing-ju WANG3,Xu-feng LI2,Teng WU2,Xiang-xu CHENG2   

  1. 1.Key Laboratory of Roads and Railway Engineering Safety of Ministry of Education,Shijiazhuang 050043,China
    2.School of Civil Engineering,Shijiazhuang Tiedao University,Shijiazhuang 050043,China
    3.School of Traffic and Transportation,Shijiazhuang Tiedao University,Shijiazhuang 050043,China
  • Received:2023-08-03 Online:2025-05-01 Published:2025-07-18

Abstract:

Although machine learning models for predicting concrete creep have been numerous studied, but only a few studies have distinguished concrete strength. Firstly, based on NU-ITI database, three machine learning models BPANN, SVR and XGBoost are used to build a prediction model for concrete creep. The results indicate that XGBoost can effectively predict the creep of concrete (R2=0.972 9). Secondly, through the analysis of correlations among parameters of high strength concrete, the parameter groups with the highest and lowest correlation coefficients were identified. Based on the parameter selection, the XGBoost models was recalculated for high strength concrete creep, revealing that excluding weakly correlated parameters significantly reduces the robustness of the computational results. This study demonstrates that there are varying degrees of correlation among parameters affecting the creep of high strength concrete. The exclusion of strongly correlated parameters has a minor impact on the accuracy of the model calculations, while the exclusion of weakly correlated parameters has a more significant effect. The research findings can serve as a reference for modeling the creep of high strength concrete.

Key words: structural engineering, high strength concrete creep, machine learning model, maximum information coefficient, robustness

CLC Number: 

  • TU17

Fig.1

NSC and HSC creep data"

Fig. 2

Experimental results are compared with those predicted by MC2010 model"

Table 1

Influence parameters of B4 model and MC2010 model"

模型类型影响参数
B4内部影响参数骨料重量、含气量、水泥含量、水泥种类、弹性模量、水灰比、抗压强度
外部影响参数环境相对湿度、环境温度、干燥龄期
MC2010内部影响参数水泥类型、抗压强度、弹性模量
外部影响参数加载龄期、截面尺寸、环境相对湿度、环境温度、应力等级、持荷时间

Fig.3

Correlation between HSC and NSC influencing factors"

Fig.4

Schematic of ANN"

Table 2

Structure parameters of BPANN"

输入层隐藏层输出层激活函数学习率损失函数
1112-10-101ReLU0.005MAE

Fig.5

Schematic of SVR"

Table 3

XGBoost parameters"

参数
数值1000.36011

Table 4

Performance of different machine learning models"

性能指标BPANNSVRXGBoost
训练集测试集训练集测试集训练集测试集
OBJ24.4132.905.80
RMSE/10-6(με·MPa-123.5123.6028.3629.116.509.46
MAE/10-6(με·MPa-116.5916.4022.8122.734.065.28
R20.827 00.796 00.748 00.744 00.986 70.972 9

Fig.6

BPANN, SVR and XGBoost training set and test set results"

Fig.7

Heat map of MIC"

Table 5

Combinations of different input variables"

组合类型参数
1HSCv/st0σfc、RH、ETa/ccw/c、Δt
2HSCv/st0σfc、RH、ETw/c、Δt
3HSCv/st0σ、RH、ETa/ccw/c

Table 6

Different combinations of XGBoost performance"

性能

指标

组合1组合2组合3
训练集测试集训练集测试集训练集测试集
OBJ1.541.7310.90
RMSE/(με·MPa-11.30×10-63.57×10-61.45×10-64.38×10-611.97×10-613.77×10-6
MAE/(με·MPa-10.97×10-61.85×10-61.00×10-62.00×10-66.97×10-67.17×10-6
R20.9980.9900.9980.9850.8950.855

Fig.8

XGBoost training set and test set results for combination1, 2 and 3"

Table 7

Two combinations of XGBoost performance"

性能

指标

组合4组合5
训练集测试集训练集测试集
OBJ1.7810.89
RMSE/(με·MPa-1

1.46×

10-6

4.68×

10-6

11.96×

10-6

13.77×

10-6

MAE/(με·MPa-1

1.02×

10-6

2.04×

10-6

6.99×

10-6

7.17×

10-6

R20.9980.9830.8980.854

Fig.9

XGBoost training set and test set results for combination 4 and 5"

Table 8

A combination of two input variables"

组合类型参数
4HSCv/st0σfcRHETa/cw/c、Δt
5HSCv/st0σfcRHETa/ccw/c
[1] Vandamme M, Ulm F J. Nanogranular origin of concrete creep[J]. Proceedings of the National Academy of Sciences, 2009, 106(26): 10552-10557.
[2] 黄永辉, 刘爱荣, 傅继阳, 等.高强钢管高强混凝土徐变特性试验研究[J]. 工程力学, 2021,38(8): 204-212.
Huang Yong-hui, Liu Ai-rong, Fu Ji-yang, et al. Experimental study on the creep characteristics of high-strength concrete filled high-strength steel tube [J]. Engineering Mechanics, 2021, 38(8): 204-212.
[3] 柯敏勇, 刘海祥, 陈松.桥用高强混凝土双轴徐变试验研究[J].建筑结构学报,2012, 33(6): 116-122.
Ke Min-yong, Liu Hai-xiang, Chen Song. Biaxial creep experiment for high strength concrete in bridge engineering [J]. Journal of Building Structures, 2012, 33(6): 116-122.
[4] Le Roy R, Le Maou F, Torrenti J M. Long term basic creep behavior of high performance concrete: data and modelling[J]. Materials and Structures, 2017, 50(1): 1-11.
[5] ACI Committee 209.209R1-92: Prediction of creep, shrinkage and temperature effects in concrete structures. manual of concrete practice part 1 [S/OL]. [1992-01-03].
[6] Betonbau. Fib model code for concrete structures 2010[J]. Ernst Shon, 2013: 97834336.
[7] Gardner N J, Lockman M J. Design provisions for drying shrinkage and creep of normal strength concrete [J]. ACI Materials Journal, 2001, 98(2): 159-167.
[8] Bažant Z P, Baweja S. Creep and shrinkage prediction model for analysis and design of concrete structures: model B3[J]. Materials and Structures, 1995, 28(6): 357-365.
[9] Bažant Z P, Wendner R. RILEM draft recommendation. TC-242-MDC multi-decade creep and shrinkage of concreteL Material model and structural analysis Model B4 for creep, drying shrinkage and autogenous shrinkage of normal and high-strength concretes with multi-decad applicability[J]. Materials Structures, 2015, 48(4): 753-770.
[10] Peng Y, Unluer C. Modeling the mechanical properties of recycled aggregate concrete using hybrid machine learning algorithms[J]. Resources, Conservation and Recycling, 2023, 190: 106812.
[11] Yang Z, Zhu H, Zhang B, et al. Short-term creep behaviors of seawater sea-sand coral aggregate concrete: An experimental study with rheological model and neural network[J]. Construction and Building Materials, 2023, 363: 129786.
[12] Pham A D, Hoang N D, Nguyen Q T. Predicting compressive strength of high-performance concrete using metaheuristic-optimized least squares support vector regression[J]. Journal of Computing in Civil Engineering, 2016, 30(3): No.06015002.
[13] Liang M, Chang Z, Wan Z, et al. Interpretable ensemble-machine-learning models for predicting creep behavior of concrete[J]. Cement and Concrete Composites, 2022, 125: 104295.
[14] 曲广雷, 闫宗伟, 郑木莲, 等. 基于神经网络与回归分析的多孔混凝土性能预测[J]. 吉林大学学报:工学版, 2025, 55(1): 269-282.
Qu Guang-lei, Yan Zong-wei, Zheng Mu-lian, et al. Performance prediction of porous concrete based on neural network and regression analysis[J]. Journal of Jilin University (Engineering and Technology Editon), 2025, 55(1): 269-282.
[15] Xu J, Zhao X, Yu Y, et al. Parametric sensitivity analysis and modelling of mechanical properties of normal-and high-strength recycled aggregate concrete using grey theory, multiple nonlinear regression and artificial neural networks[J]. Construction and Building Materials, 2019, 211: 479-491.
[16] Park D, Rilett L R. Forecasting freeway link travel times with a multilayer feedforward neural network[J]. Computer‐Aided Civil and Infrastructure Engineering, 1999, 14(5): 357-367.
[17] Reshef D N, Reshef Y A, Finucane H K, et al. Detecting novel associations in large data sets[J]. Science, 2011, 334(6062): 1518-1524.
[18] Li K, Long Y, Wang H, et al. Modeling and sensitivity analysis of concrete creep with machine learning methods[J]. Journal of Materials in Civil Engineering, 2021, 33(8): 04021206.
[19] Hubler M H, Wendner R, Bazant Z P. Comprehensive database for concrete creep and shrinkage: Analysis and recommendations for testing and recording[J]. ACI Materials Journal, 2015, 112(4): 547-558.
[20] Tang L, Na S H. Comparison of machine learning methods for ground settlement prediction with different tunneling datasets[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13(6): 1274-1289.
[21] Hastie T, Tibshirani R, Friedman J H, et al. The Elements of Statistical Learning: Data Mining, Inference, and Prediction[M]. New York: Springer, 2009.
[22] Cortes C, Vapnik V. Support-vector networks[J]. Machine Learning, 1995, 20: 273-297.
[23] Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: machine learning in python[J]. Journal of Machine Learning Research, 2011, 12: 2825-2830.
[24] Chen T, Guestrin C. XGBoost: a scalable tree boosting system[C]∥Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, USA, 2016: 785-794.
[25] Zeghal M. Modeling the creep compliance of asphalt concrete using the artificial neural network technique[C]∥GeoCongress 2008: Characterization, Monitoring, and Modeling of GeoSystems, New Orleans, USA, 2008: 910-916.
[1] Xue-ping FAN,Du YANG,Jiu-yu LI,Qi-fan ZHAO,Yue-fei LIU. Dynamic prediction of bridge coupled extreme stresses produced by temperature and vehicle loads [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1588-1594.
[2] Yu ZHOU,Meng LI,Sheng-kui DI,Xian-zeng SHI,Dong CHEN. Analytical solution of thrust influence line of variable section two-hinged arch and application of damage identification [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 664-672.
[3] Yu-dai WANG,Bin WANG,Fu-sheng MIAO,Nan MA. Freezing and expansion response of lined channels under changes in hydrothermal coupling [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 256-268.
[4] Hao JIANG,Zheng-wen ZHAO. Experiment on shear performance of RC beams strengthened with basalt fiber grid cement-based composites [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 211-220.
[5] Fang-fang WEI,Li-ping LI,Qing-peng XU,You-zheng ZHAO,Jing-jing YANG. Experiment on seismic behavior of fire-fired composite shear wall with double steel plates and infill concrete after reinforcement [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 230-244.
[6] Jin-quan ZHAO,Long ZHOU,Yong-gang DING,Rong-ji ZHU. Experiment on anchoring performance of spiral stirrup-corrugated pipe grout splicing [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2484-2494.
[7] Wei-song YANG,An ZHANG,Wei-xiao XU,Hai-sheng LI,Ke DU. Seismic performance of stiffness enhanced metal coupling beam damper [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2469-2483.
[8] Qi-wu YAN,Zhong-liang ZOU. Hybrid algorithm for seismic energy-dissipated structures based on optimal placement of dampers [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2267-2274.
[9] Feng-guo JIANG,Yu-ming ZHOU,Li-li BAI,Shuang LIANG. Improved krill algorithm and its application in structural optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2256-2266.
[10] Guang-tai ZHANG,Cheng-xiao ZHOU,Shi-tuo LIU. Restoring force model of fiber lithium slag concrete column in saline soil environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1944-1957.
[11] Yan-song DIAO,Yi-jian REN,Yuan-qiang YANG,Ling-yun ZHAO,Xiu-li LIU,Yun LIU. Experimental on seismic performance of replaceable splicing steel beam-column joints with friction energy dissipation components [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1643-1656.
[12] Xue-ping FAN,Yue-fei LIU. Bridge extreme stress dynamic prediction based on improved Gaussian mixed particle filter new algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1038-1044.
[13] Yi-fan LIU,Zhi-wei MIAO,Chen SHEN,Xiang-dong GENG. Evaluation of mechanical properties of non-uniform corroded rebars based on Monte Carlo method [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1007-1015.
[14] Xue-ping FAN,Heng ZHOU,Yue-fei LIU. Time⁃variant reliability analysis of bridge members based on Gaussian Copula⁃Bayesian dynamic models [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 485-493.
[15] Hai-xu YANG,Yue GUO,Hai-biao WANG,Yi HU. Bending performance of cold-formed thin-walled steel-glulam composite beams [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(12): 3513-3525.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shao-hua,Huang Hui,Guo Ting-ting,Pu Jian-ye. Numerical simulations of particle trajectory in turbulent jettocross flow[J]. 吉林大学学报(工学版), 2006, 36(06): 1029 -1033 .
[2] CHEN Yu,TANG Chang-jie,ZHU Ming-fang,DAI Shu-cheng,ZHU Rui,JIANG Yue,LI Chuan. FactorGEP: a novel factorization of polynomial algorithm based on GEP with gene reduction strategy[J]. 吉林大学学报(工学版), 2009, 39(06): 1612 -1617 .
[3] YANG Xiang-an, RUAN Feng. Compensation direction for die-face adjustment based on springback compensation[J]. 吉林大学学报(工学版), 2012, 42(01): 103 -108 .
[4] CUI Xianghong, JIANG Qichuan, WANG Shuqi, LI Junyi. Application and Improvement of Service Life of Hotforging[J]. 吉林大学学报(工学版), 2005, 35(06): 567 -0572 .
[5] BAN Jiao, PEI Chang-Xing. Information entropy theoretic approach to traffic sampling measurement in highspeed IPv6 networks[J]. 吉林大学学报(工学版), 2009, 39(05): 1337 -1341 .
[6] GAO Yi-peng, DING Hong,JIN Xue-jun. γ′ |precipitation during ageing of a CoAlW alloy by phase field simulation[J]. 吉林大学学报(工学版), 2011, 41(01): 84 -0088 .
[7] Fang Zhigeng,Liu Sifeng,Ruan Aiqing. Pure Strategy Solution and Venture Problem of Grey Matrix Game Based on Undeterminable Directly Interval Grey Number[J]. 吉林大学学报(工学版), 2006, 36(01): 137 -0142 .
[8] ZHOU Jie, ZHAO Xiao-hui,LIN Gao-san . Improved semiblind channel estimation algorithm
based on LMMSE for OFDM system
[J]. 吉林大学学报(工学版), 2009, 39(02): 508 -0513 .
[9] DU Jun, LI Wei-hua. Security trust model for multi-hop wireless ad hoc networks[J]. 吉林大学学报(工学版), 2011, 41(05): 1421 -1425 .
[10] JIA He-ming, SONG Wen-long, CHEN Zi-yin. Path-following controller for non-holonomic mobile robots based on feedback gain backstepping[J]. , 2012, 42(04): 1003 -1007 .