Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (8): 2579-2587.doi: 10.13229/j.cnki.jdxbgxb.20231247
Jing TIAN1(
),She-qiang MA1(
),Xian-min SONG2,Dan ZHAO1,Fa-cheng CHEN1
CLC Number:
| [1] | Yu J J Q, Gu J. Real-time traffic speed estimation with graph convolutional generative autoencoder[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(10): 3940-3951. |
| [2] | Zhang L, Chen T, Yu B, et al. Suburban demand responsive transit service with rental vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(4): 2391-2403. |
| [3] | Li X, Wang T, Xu W, et al. A novel model for designing a demand-responsive connector (DRC) transit system with consideration of users' preferred time windows[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(4): 2442-2451. |
| [4] | 田婧. 知识感知下的道路交通状态重构方法研究[D]. 长春: 吉林大学交通学院, 2023. |
| Tian Jing. Research on road traffic state reconstruction method in perspective of knowledge-aware[D]. Changchun: School of Transportation, Jilin University, 2023. | |
| [5] | Ahmed M S, Cook A R. Analysis of freeway traffic time-series data by using box-jenkins techniques[J]. Transportation Research Record, 1979, 722: 1-9. |
| [6] | Williams B M, Hoel L A. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: Theoretical basis and empirical results[J]. Journal of Transportation Engineering, 2003, 129(6): 664-672. |
| [7] | 陈喜群,曹震,莫栋. 融合卡尔曼滤波的高速公路状态估计误差界限分析[J]. 交通运输系统工程与信息, 2022, 22(4): 72-78. |
| Chen Xi-qun, Cao Zhen, Mo Dong. Analyzing error bounds of highway traffic state estimation via Kalman filter fusion[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(4): 72-78. | |
| [8] | Tang J, Zhang G, Wang Y, et al. A hybrid approach to integrate fuzzy C-means based imputation method with genetic algorithm for missing traffic volume data estimation[J]. Transportation Research Part C: Emerging Technologies, 2015, 51(4): 29-40. |
| [9] | 陈佳良,胡钊政,李飞. 基于时空特征序列匹配的交通流状态估计方法[J]. 交通信息与安全, 2021, 39(3): 68-76. |
| Chen Jia-liang, Hu Zhao-zheng, Li Fei. An estimation method of traffic flow state based on matching of temporal-spatial feature sequences[J]. Journal of Transport Information and Safety, 2021, 39(3): 68-76. | |
| [10] | Xiao J, Wei C, Liu Y. Speed estimation of traffic flow using multiple kernel support vector regression[J]. Physica A: Statistical Mechanics and its Applications, 2018, 509(11): 989-997. |
| [11] | Chen X, He Z, Sun L. A bayesian tensor decomposition approach for spatiotemporal traffic data imputation[J]. Transportation Research Part C: Emerging Technologies, 2019, 98: 73-84. |
| [12] | Tian Y, Zhang K, Li J, et al. LSTM-based traffic flow prediction with missing data[J]. Neurocomputing (Amsterdam), 2018, 318: 297-305. |
| [13] | Zhang S, Zhou L, Chen X, et al. Network‐wide traffic speed forecasting: 3D convolutional neural network with ensemble empirical mode decomposition[J]. Computer-Aided Civil and Infrastructure Engineering, 2020, 35(10): 1132-1147. |
| [14] | Rempe F, Franeck P, Bogenberger K. On the estimation of traffic speeds with deep convolutional neural networks given probe data[J]. Transportation Research Part C: Emerging Technologies, 2022, 134(1): 103448. |
| [15] | Ouafa B, Bilal T T, Hwasoo Y, et al. Traffic data imputation using deep convolutional neural networks[J]. IEEE Access, 2020, 8: 104740-104752. |
| [16] | Dai J, Qi H, Xiong Y, et al. Deformable convolutional networks[C]∥Proceeding of the IEEE International Conference on Computer Vision. Los Alamitos: IEEE Computer Society, 2017: 764-773. |
| [17] | Zhu X, Hu H, Lin S, et al. Deformable convnets V2: More deformable, better results[C]∥Proceeding of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society, 2020: 9300-9308. |
| [18] | Doersch C. Tutorial on variational autoencoders[J]. Arxiv Preprint, 2016, 6: 160605908. |
| [19] | Dilip D M, Freris N M, Jabari S E. Sparse estimation of travel time distributions using Gamma kernels[C]∥Transportation Research Board 96th Annual Meeting. Washington: Transportation Research Board, 2017: 01628670. |
| [20] | Jabari S E G, Dilip D M, Lin D, et al. Learning traffic flow dynamics using random fields[J]. IEEE Access, 2019, 7: 130566-130577. |
| [21] | Treiber M, Kesting A, Wilson R E. Reconstructing the traffic state by fusion of heterogeneous data[J]. Computer-Aided Civil and Infrastructure Engineering, 2011, 26(6): 408-419. |
| [22] | Scherer D, Müller A, Behnke S. Evaluation of pooling operations in convolutional architectures for object recognition[C]∥Lecture Notes in Computer Science. Berlin: Springer, 2010: 92-101. |
| [23] | Tan C P, Yao J R, Tang K S, et al. Cycle-based queue length estimation for signalized intersections using sparse vehicle trajectory data[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(1): 91-106. |
| [24] | Masci J, Meier U, Ciresan D, et al. Stacked convolutional auto-encoders for hierarchical feature extraction[C]∥Proceeding of the International Conference on Artificial Neural Networks. Berlin: Springer, 2011: 52-59. |
| [25] | Chen X, Yang J, Sun L. A nonconvex low-rank tensor completion model for spatiotemporal traffic data imputation[J]. Transportation Research Part C: Emerging Technologies, 2020, 117(8): 102673. |
| [26] | Cui Z, Ke R, Pu Z, et al. Stacked bidirectional and unidirectional LSTM recurrent neural network for forecasting network-wide traffic state with missing values[J]. Transportation Research Part C: Emerging Technologies, 2020, 118(9): 102674. |
| [27] | Chen Y, Lv Y, Wang F Y. Traffic flow imputation using parallel data and generative adversarial networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(4): 1624-1630. |
| [28] | Zhang K, He Z, Zheng L, et al. A generative adversarial network for travel times imputation using trajectory data[J]. Computer-Aided Civil and Infrastructure Engineering, 2021, 36(2): 197-212. |
| [1] | Hong XIAO,Xian-de LIU. Real-time acquisition and dynamic analysis of learning state based on hybrid intelligence [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(7): 2402-2408. |
| [2] | Zhi-gang FENG,Shou-qi WANG,Ming-yue YU. Rolling bearing fault diagnosis based on variational mode extraction and lightweight network [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(6): 1883-1891. |
| [3] | Rui-shan DU,Zi-shan WANG. Multi perspective facial expression recognition algorithm based on spatiotemporal attention [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(6): 2097-2102. |
| [4] | Hao WANG,Bin ZHAO,Guo-hua LIU. Temporal and motion enhancement for video action recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 339-346. |
| [5] | Sheng-jie ZHU,Xuan WANG,Fang XU,Jia-qi PENG,Yuan-chao WANG. Multi-scale normalized detection method for airborne wide-area remote sensing images [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2329-2337. |
| [6] | Ming-hui SUN,Hao XUE,Yu-bo JIN,Wei-dong QU,Gui-he QIN. Video saliency prediction with collective spatio-temporal attention [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1767-1776. |
| [7] | Xiao-hui WEI,Chen-yang WANG,Qi WU,Xin-yang ZHENG,Hong-mei YU,Heng-shan YUE. Systolic array-based CNN accelerator soft error approximate fault tolerance design [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1746-1755. |
| [8] | Chao XIA,Meng-jia WANG,Jian-yue Zhu,Zhi-gang YANG. Reduced-order modelling of a bluff body turbulent wake flow field using hierarchical convolutional neural network autoencoder [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 874-882. |
| [9] | Guo-jun YANG,Ya-hui QI,Xiu-ming SHI. Review of bridge crack detection based on digital image technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 313-332. |
| [10] | Yu LU,Qian CHEN,Hai-bing YIN. Optimization algorithm for video coding based on convolutional neural networks [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(11): 3296-3301. |
| [11] | Xi-jun ZHANG,Ji-yang SHANG,Guang-jie YU,Jun HAO. Bearing fault diagnosis based on attention for multi-scale convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(10): 3009-3017. |
| [12] | Xiang-jiu CHE,Huan XU,Ming-yang PAN,Quan-le LIU. Two-stage learning algorithm for biomedical named entity recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2380-2387. |
| [13] | Pei-yong LIU,Jie DONG,Luo-feng XIE,Yang-yang ZHU,Guo-fu YIN. Surface defect detection algorithm of magnetic tiles based on multi⁃branch convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1449-1457. |
| [14] | Zhen-hai ZHANG,Kun JI,Jian-wu DANG. Crack identification method for bridge based on BCEM model [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1418-1426. |
| [15] | Feng-le ZHU,Yi LIU,Xin QIAO,Meng-zhu HE,Zeng-wei ZHENG,Lin SUN. Analysis of hyperspectral image based on multi-scale cascaded convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(12): 3547-3557. |
|
||