Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (10): 3009-3017.doi: 10.13229/j.cnki.jdxbgxb.20221537
Xi-jun ZHANG(
),Ji-yang SHANG,Guang-jie YU,Jun HAO
CLC Number:
| 1 | Zhang S, Zhang S, Zhang S B, et al. Deep learning algorithms for bearing fault diagnostics—a comprehensive review[J]. IEEE Access, 2020, 8: 29857-29881. |
| 2 | Huang Y J, Liao A H, Hu D Y, et al. Multi-scale convolutional network with channel attention mechanism for rolling bearing fault diagnosis[J]. Measurement, 2022, 203: No.111935. |
| 3 | Cai J H, Xiao Y L, Fu L Y. Fault diagnosis of rolling bearing based on fractional fourier instantaneous spectrum[J]. Experimental Techniques, 2022, 46(2): 249-256. |
| 4 | Islam M M M, Kim J M. Automated bearing fault diagnosis scheme using 2D representation of wavelet packet transform and deep convolutional neural network[J]. Computers in Industry, 2019, 106: 142-153. |
| 5 | 胡茑庆, 陈徽鹏, 程哲, 等. 基于经验模态分解和深度卷积神经网络的行星齿轮箱故障诊断方法[J]. 机械工程学报, 2019, 55(7): 9-18. |
| Hu Niao-qing, Chen Hui-peng, Cheng Zhe, et al. Fault di-agnosis for planetary gearbox based on EMD and deep convolutional neural networks[J]. Journal of Mechanical Engineering, 2019, 55(7): 9-18. | |
| 6 | Li J M, Yao X F, Wang X D, et al. Multiscale local features learning based on BP neural network for rolling bearing intelligent fault diagnosis[J]. Measurement, 2020, 153: No.107419. |
| 7 | Malhi A, Gao X R.PCA-based feature selection scheme for machine defect classification[J]. IEEE Transactions on Instrumentation and Measurement, 2004, 53(6): 1517-1525. |
| 8 | Zhang X Y, Li C S, Wang X B, et al. A novel fault diagnosis procedure based on improved symplectic geometry mode decomposition and optimized SVM[J]. Measurement, 2021, 173: No.108644. |
| 9 | Janssens O, Slavkovikj V, Vervisch B, et al. Convolutional neural network based fault detection for rotating machinery[J]. Journal of Sound and Vibration, 2016, 377: 331-345. |
| 10 | Eren L, Ince T, Kiranyaz S. A generic intelligent bearing fault diagnosis system using compact adaptive 1D CNN classifier[J]. Journal of Signal Processing Systems, 2019, 91(2): 179-189. |
| 11 | 孙祺淳, 李媛媛. DE算法优化CNN的滚动轴承故障诊断研究[J]. 噪声与振动控制, 2022, 42(4): 165-171, 176. |
| Sun Qi-chun, Li Yuan-yuan. Research on fault diagnosis of rolling bearings based on DE algorithm optimization of CNN[J]. Noise and Vibration Control, 2022, 42(4): 165-171, 176. | |
| 12 | Zhai X D, Qiao F, Ma Y, et al. A novel fault diagnosis method under dynamic working conditions based on a CNN with an adaptive learning rate[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-12. |
| 13 | Zhang W, Peng G L, Li C H, et al. A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals[J]. Sensors, 2017, 17(2): 425. |
| 14 | Liang H P, Cao J, Zhao X Q. Multi-scale dynamic adaptive residual network for fault diagnosis[J]. Measurement,2022, 188: No.110397. |
| 15 | Huang W Y, Cheng J S, Yang Y, et al. An improved deep convolutional neural network with multi-scale information for bearing fault diagnosis[J]. Neurocomputing, 2019, 359: 77-92. |
| 16 | 许子非, 金江涛, 李春. 基于多尺度卷积神经网络的滚动轴承故障诊断方法[J]. 振动与冲击, 2021, 40(18): 212-220. |
| Xu Zi-fei, Jin Jiang-tao, Li Chun. New method for the fault diagnosis of rolling bearings based on a multiscale convolutional neural network[J]. Journal of Vibration and Shock, 2021, 40(18): 212-220. | |
| 17 | 康涛, 段蓉凯, 杨磊,等.融合多注意力机制的卷积神经网络轴承故障诊断方法[J].西安交通大学学报, 2022, 56(12): 68-77. |
| Kang Tao, Duan Rong-kai, Yang Lei, et al. Bearing fault diagnosis method using convolutional neural network fused with multi-attention mechanism[J]. Journal of Xi´an Jiao Tong University, 2022, 56(12): 68-77. | |
| 18 | Hu J, Li S, Samuel A, et al. Squeeze-and-excitation networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(8):2011-2023. |
| 19 | An Z H, Li S M, Wang J R, et al. Generalization of deep neural network for bearing fault diagnosis under different working conditions using multiple kernel method[J]. Neurocomputing, 2019, 352: 42-53. |
| 20 | Wang Q L, Wu B G, Zhu P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, Piscataway, USA,2020: 11531-11539. |
| 21 | Smith W A, Randall R B. Rolling element bearing diagnostics using the case Western Reserve University data: a benchmark study[J]. Mechanical Systems and Signal Processing, 2015, 64‐65: 100-131. |
| 22 | Wang B, Lei Y G, Li N P, et al. A hybrid prognostics approach for estimating remaining useful life of rolling element bearings[J]. IEEE Transactions on Reliability, 2020, 69(1): 401-412. |
| 23 | Van D M L, Maaten, Hinton G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9: 2579-2605. |
| 24 | He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, USA, 2016: 770-778. |
| [1] | Lu Li,Jun-qi Song,Ming Zhu,He-qun Tan,Yu-fan Zhou,Chao-qi Sun,Cheng-yu Zhou. Object extraction of yellow catfish based on RGHS image enhancement and improved YOLOv5 network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2638-2645. |
| [2] | Ping YU,Kang ZHAO,Jie CAO. Rolling bearing fault diagnosis based on optimized A-BiLSTM [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2156-2166. |
| [3] | Sheng-jie ZHU,Xuan WANG,Fang XU,Jia-qi PENG,Yuan-chao WANG. Multi-scale normalized detection method for airborne wide-area remote sensing images [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2329-2337. |
| [4] | Yun-zuo ZHANG,Yu-xin ZHENG,Cun-yu WU,Tian ZHANG. Accurate lane detection of complex environment based on double feature extraction network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1894-1902. |
| [5] | Chang-jian WANG,Jiu-ming LIU,Jin-zhou ZHANG,Bin LI. Laser sequence pulse diagnosis method of planetary reducer fault based on high-speed photography technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1869-1875. |
| [6] | Xiao-hui WEI,Chen-yang WANG,Qi WU,Xin-yang ZHENG,Hong-mei YU,Heng-shan YUE. Systolic array-based CNN accelerator soft error approximate fault tolerance design [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1746-1755. |
| [7] | Ming-hui SUN,Hao XUE,Yu-bo JIN,Wei-dong QU,Gui-he QIN. Video saliency prediction with collective spatio-temporal attention [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1767-1776. |
| [8] | Yun-long GAO,Ming REN,Chuan WU,Wen GAO. An improved anchor-free model based on attention mechanism for ship detection [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1407-1416. |
| [9] | Chao XIA,Meng-jia WANG,Jian-yue Zhu,Zhi-gang YANG. Reduced-order modelling of a bluff body turbulent wake flow field using hierarchical convolutional neural network autoencoder [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 874-882. |
| [10] | Xiao-xu LI,Wen-juan AN,Ji-jie WU,Zhen LI,Ke ZHANG,Zhan-yu MA. Channel attention bilinear metric network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 524-532. |
| [11] | Guo-jun YANG,Ya-hui QI,Xiu-ming SHI. Review of bridge crack detection based on digital image technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 313-332. |
| [12] | Guang HUO,Da-wei LIN,Yuan-ning LIU,Xiao-dong ZHU,Meng YUAN,Di GAI. Lightweight iris segmentation model based on multiscale feature and attention mechanism [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2591-2600. |
| [13] | Xiao-xin GUO,Jia-hui LI,Bao-liang ZHANG. Joint segmentation of optic cup and disc based on high resolution network [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2350-2357. |
| [14] | Xiang-jiu CHE,Huan XU,Ming-yang PAN,Quan-le LIU. Two-stage learning algorithm for biomedical named entity recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2380-2387. |
| [15] | Fei-fei TANG,Hai-lian ZHOU,Tian-jun TANG,Hong-zhou ZHU,Yong WEN. Multi⁃step prediction method of landslide displacement based on fusion dynamic and static variables [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1833-1841. |
|
||