Journal of Jilin University(Engineering and Technology Edition) ›› 2026, Vol. 56 ›› Issue (1): 140-149.doi: 10.13229/j.cnki.jdxbgxb.20240657

Previous Articles     Next Articles

Simulation optimization of laser welding heat source and residual stress simulation analysis of AH36 marine steel

Wei SHEN1,2(),Jia-xing GUO1,2,Yue YIN3   

  1. 1.Key Laboratory of High Performance Ship Technology(Wuhan Universityof Technology),Ministry of Education,Wuhan 430063,China
    2.School of Naval Architecture,Ocean and Energy Power Engineering,Wuhan University of Technology,Wuhan 430063,China
    3.China Ship Research and Design Center,Wuhan 430000,China
  • Received:2024-06-13 Online:2026-01-01 Published:2026-02-03

Abstract:

In shipbuilding, the laser-welding heat source is intrinsically narrow and deep; while this favors penetration depth and travel speed, it also promotes localized heat accumulation and residual-stress concentration. Focusing on AH36 high-strength steel, this study employs finite-element simulation to characterize the melt-pool geometry in laser welding. Ten moving-heat-source patterns are selected and defined; the cross-sectional shapes at steady-state welding are extracted for each model and compared with the actual melt-pool profile observed in laser welds, allowing the optimum heat-source model for butt-joint laser welding to be identified. Furthermore, thermo-mechanical coupling simulations are performed to predict the welding distortion and residual-stress distribution in laser-welded butt plates, and the predictions are validated against experimental measurements. Good agreement is achieved in both magnitude and trend, providing a reliable theoretical basis for subsequent optimization of laser-welding procedures and fatigue assessment of laser-welded structures.

Key words: laser welding, heat source model, AH36 high-strength steel, residual stress, fatigue evaluation, weld pool shape

CLC Number: 

  • U663.9

Table 1

Combined heat source formula"

热源名称热源密度分布公式
高斯(Gaussian)热源q(x,y,z,t)=q0?exp-3(x2+y-vt2)R2q0=3πR2?Q
高斯旋转体热源q(x,y,z,t)=q(0,0)?exp-3cslghz(x2+y-vt2)
双椭球热源qf(x,y,z,t)=63ffQabcfπ3/2?exp-3x2a2+y2b2+z-vt2cf2qr(x,y,z,t)=63frQabcrπ3/2?exp-3x2a2+y2b2+z-vt2cr2
双高斯圆柱热源q1(x,y,z,t)=Q1πR12h1?exp-(x2+y-vt2)R12uzq2(x,y,z,t)=Q2πR22h2?exp-(x2+y-vt2)R22uz
高斯圆柱热源q(x,y,z,t)=QπR2h?exp-(x2+y-vt2)R2uz
高斯圆锥热源(Ⅰ)q(x,y,z,t)=QπR2h?exp-(x2+y2+z-vt2)R21-zd
高斯圆锥热源(Ⅱ)q(x,y,z,t)=Q?exp-x2+z-vt2r0y2r0y=re+ri+reyi-yey-ye
圆锥吸收系数热源q(x,y,z,t)=αQ1-Rreflect2πR2?exp-(x2+y-vt2)2πR2-αz
圆锥光束热源q(x,y,z,t)=αQ1-Rreflectπσxσy?exp-x22σx2-y22σy2-αz
抛物线热源q(x,y,z,t)=Q?exp-3x2+z-vt2r0yr0y=R?y+hh

Fig.1

Laser welded butt plate specimens"

Table 2

AH36 material properties"

温度/

密度/

(kg·m-3

弹性模量/

105 MPa

泊松比

导热系数

/(W·m-1·℃-1

热膨胀

系数/℃

比热容

/(J·kg-1·℃-1

屈服

强度/MPa

227 8802.100.27501.15480400
1007 8802.000.27451.20500340
2007 8802.000.28401.30520315
4007 8001.700.28361.42650230
6007 7600.800.29341.45750110
8007 6000.350.30251.451 00030
1 0007 5200.200.31261.451 20025
1 2007 3900.150.32281.451 40020
1 4007 3000.100.32571.451 60018
1 5507 2500.100.32671.451 70015
1 8007 1800.100.322151.451 77010
2 0007 1800.100.322801.451 80010

Fig.2

Weld size and grid diagram of finite element model"

Fig.3

Laser welding diagram"

Fig.4

Convection heat transfer coefficient curve of air"

Fig.5

Cloud picture of temperature field distribution of double ellipsoidal heat source"

Fig.6

Temperature-time curve"

Fig.7

Temperature-time curve of typical nodes perpendicular to direction of weld(X)"

Fig.8

Temperature-time curve of typical nodes in thickness direction(Y)"

Fig.9

Temperature-time curve of typical nodes along direction of weld(Z)"

Fig.10

Temperature-time curves of different heat source models"

Table 3

Profile shapes of different heat sources"

热源类型XY剖面热源类型XY剖面
高斯热源

高斯圆锥

热源(Ⅰ)

高斯旋转

体热源

高斯圆锥

热源(Ⅱ)

双椭球

热源

圆锥吸收

系数热源

高斯圆柱

热源

圆锥光束

热源

双高斯

圆柱热源

抛物线

热源

实际试样

Fig.11

Location diagram of measuring points"

Fig.12

B-type strain gauge and patch diagram"

Fig.13

Schematic diagram of boundary conditions for stress field calculations"

Fig.14

Comparison curve of residual stress results between test and simulation"

[1] Yun L Q, Ju D, Quan H, et al. Electron beam welding, laser beam welding and gas tungsten arc welding of titanium sheet[J]. Materials Science and Engineering A, 2000, 280(1): 177-181.
[2] Xue X, Pereira A B, Amorim J, et al. Effects of pulsed Nd: YAG laser welding parameters on penetration and microstructure characterization of a DP1000 steel butt joint[J]. Metals, 2017, 7(8): 292.
[3] Chen H C, Pinkerton A J, Li L, et al. Gap-free fibre laser welding of Zn-coated steel on Al alloy for light-weight automotive applications[J]. Materials & Design, 2011, 32(2): 495-504.
[4] Wahba M, Mizutani M, Katayama S. Microstructure and mechanical properties of hybrid welded joints with laser and CO2-shielded arc[J]. Journal of Materials Engineering and Performance, 2016, 25: 2889-2894.
[5] Joo S M, Bang H S, Kwak S Y. Optimization of hybrid CO2 laser-GMA welding parameters on dissimilar materials AH32/STS304L using Grey-based Taguchi analysis[J]. International Journal of Precision Engineering and Manufacturing, 2014, 15: 447-454.
[6] 莫春立, 钱百年, 国旭明. 焊接热源计算模式的研究进展[J]. 焊接学报, 2001(3): 93-96.
Mo Li-chun, Qian Bai-nian, Guo Xu-ming. Research progress of welding heat source calculation model[J]. Welding Journal, 2001(3): 93-96.
[7] 吴甦, 赵海燕, 王煜, 等. 高能束焊接数值模拟中的新型热源模型[J]. 焊接学报, 2004(1): 91-95.
Wu Su, Zhao Hai-yan, Wang Yu, et al. A new heat source model for numerical simulation of high energy beam welding[J]. Welding Journal, 2004(1): 91-95.
[8] Goldak J, Chakravarti A, Bibby M. A new finite element model for welding heat sources[J]. Metallurgical Transactions B, 1984, 15: 299-305.
[9] 陈大江, 张大斌, 陈素,等. “GAUSS+半椭球”热源模拟激光焊接[J]. 组合机床与自动化加工技术,2022(5):174-177, 186.
Chen Da-jiang, Zhang Da-bin, Chen su, et al. "GAUSS+semi-ellipsoid" heat source simulates laser welding[J]. Combined Machine Tools and Automated Processing Technology,2022(5):174-177, 186.
[10] 王清龙. 船用钛合金中厚板激光电弧复合热源焊接工艺及数值模拟研究[D]. 哈尔滨:哈尔滨工程大学船舶工程学院, 2022.
Wang Qing-long. Study on laser arc composite heat source welding technology and numerical simulation of marine titanium alloy medium thick plate[D]. Harbin: School of Ship Engineering, Harbin Engineering University, 2022.
[11] 吴树森, 刘玉起. 材料成型原理[M]. 北京: 机械工业出版社, 2009.
[12] 李庆庆, 宋建岭, 彭江涛, 等. 2219铝合金TIG焊接头残余应力分布[J]. 焊接, 2016(1): 54-57.
Li Qing-qing, Song Jian-ling, Peng Jiang-tao, et al. Residual stress distribution of 2219 aluminum alloy TIG welded joint[J]. Weld, 2016(1): 54-57.
[13] 罗家元, 李鑫, 谭超. 焊接残余应力对高强钢点焊接头裂纹扩展及疲劳性能的影响[J]. 机械强度, 2024,46(2): 439-445.
Luo Jia-yuan, Li Xin, Tan Chao. Effect of welding residual stress on crack growth and fatigue properties of spot welded joints of high strength steel[J]. Mechanical Strength, 2024, 46(2) : 439-445.
[14] 徐坤, 范彩霞, 韩二阳. 热源模型对Q420厚板焊接残余应力和变形预测精度的影响[J]. 热加工工艺, 2018, 47(23): 222-226.
Xu Kun, Fan Cai-xia, Han Er-yang. Influence of heat source model on prediction accuracy of residual stress and deformation in welding of Q420 thick plate[J]. Hot Working Technology, 2018,47(23): 222-226.
[15] 陈家权, 肖顺湖, 杨新彦. 焊接过程数值模拟热源模型的研究进展[J]. 装备制造技术, 2005(3): 10-14.
Chen Jia-quan, Xiao Shun-hu, Yang Xin-yan. Research progress of heat source model for numerical simulation of welding process[J]. Equipment Manufacturing Technology, 2005(3): 10-14.
[16] Chukkan J R, Vasudevan M, Muthukumaran S, et al. Simulation of laser butt welding of AISI 316L stainless steel sheet using various heat sources and experimental validation[J]. Journal of Materials Processing Technology, 2015, 219: 48-59.
[17] 曾志, 王立君, 王月. 5A06铝合金间断焊温度场的数值模拟[J]. 天津大学学报, 2008,34(7): 849-853.
Zeng Zhi, Wang Li-jun, Wang Yue. Numerical simulation of temperature field in intermittent welding of 5A06 aluminum alloy[J]. Journal of Tianjin University, 2008,34(7): 849-853.
[18] Liu Y, Jiang P, Ai Y W, et al. Prediction of weld shape for fiber laser welding based on hybrid heat source model[C]//Proceedings of the 3rd International Conference on Material, Mechanical and Manufacturing Engineering,Guangzhou, China, 2015.
[19] Raftar H R, Ahola A, Lipiäinen K, et al. Simulation and experiment on residual stress and deflection of cruciform welded joints[J]. Journal of Constructional Steel Research, 2023, 208: No.108023.
[20] 姚相林. AH36的焊接残余应力数值模拟及实验研究[D]. 镇江:江苏科技大学船舶与海洋工程学院, 2021.
Yao Xiang-lin. Numerical simulation and experimental study on welding residual stress of AH36[D]. Zhenjiang: School of Shipbuilding and Ocean Engineering, Jiangsu University of Science and Technology, 2021.
[21] 崔爱永, 胡芳友. 激光超声振动焊修技术[M]. 北京: 化工工业出版社, 2018.
[22] 高健. AH36船舶钢激光-电弧复合焊工艺研究[D]. 南京:南京理工大学材料科学与工程学院, 2020.
Gao Jian. Study on laser arc composite welding technology of AH36 marine steel[D]. Nanjing: School of Materials Science and Engineering, Nanjing University of Science and Technology, 2020.
[23] 梁融. 基于热流固耦合的激光焊接数值模拟方法研究[D]. 上海:上海交通大学船舶海洋与建筑工程学院, 2019.
Liang Rong. Research on numerical simulation method of laser welding based on heat-fluid-structure coupling[D]. Shanghai: School of Shipbuilding, Oceanography and Architectural Engineering, Shanghai Jiao Tong University, 2019.
[24] 李卓. 考虑焊接残余应力影响的正交异性钢桥面板疲劳性能评估[D]. 南京: 东南大学土木工程学院, 2020.
Li Zhuo. Fatigue performance evaluation of orthotropic steel bridge panels considering welding residual stress[D]. Nanjing: School of Civil Engineering, Southeast University, 2020.
[25] 杨明. 考虑焊接残余应力的应变能密度法碳钢接头疲劳性能研究[D]. 长春: 吉林大学机械与航空航天工程学院, 2022.
Yang Ming. Study on fatigue properties of carbon steel joints bystrain energy density method considering welding residual stress[D]. Changchun: School of Mechanical and Aerospace Engineering, Jilin University, 2022.
[1] Li-jia LI,Hong-rui LI,Peng-shu XIE,Shi-tong YANG,Da CUI,Yong HU. Influence of residual stress on cyclic indentation behavior of materials [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(7): 2193-2202.
[2] Chang-long ZHAO,Chen MA,Jun-bao YANG,Qin-xiang ZHAO,Xiao-yu JIA,Hong-nan MA. Influence of pre⁃set surface texture on laser cladding of 316L coatings [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(3): 899-911.
[3] Bing CHEN,Yang-kun ZHANG,Yang WANG,Sheng-zhe LIU,Jin-yang HAN. Damage parameter identification of laser welded joint shear Gurson⁃Tvergaard⁃Needleman model [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(12): 3468-3477.
[4] Xing WEI,Ya-jie GAO,Zhi-rui KANG,Yu-chen LIU,Jun-ming ZHAO,Lin XIAO. Numerical simulation of residual stress field of stud girth weld in low temperature environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 198-208.
[5] Kai-yu LUO,Jun-cheng CHEN,Chang-yu WANG,Jin-zhong LU. Effect of spot diameteron corrosion resistance of aluminum alloy subjected to laser shock peening [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 501-510.
[6] Chun-guo LIU,Xiao-tong YU,Tao YUE,Dong-lai LI,Ming-zhe ZHANG. Springback prediction for double-curvature stiffened panel during milling [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 188-199.
[7] Jin⁃zhong LU,Wan⁃ting ZHOU,Sheng⁃yang ZHANG,Yi⁃kai SHAO,Chang⁃yu WANG,Kai⁃yu LUO. Effect of coverage layer on corrosion resistance of 6061⁃T6 aluminum alloy subjected to laser shock peening [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 842-849.
[8] LIU Zi-wu, LI Jian-feng. Erosion damage and evaluation of remanufacturing cladding layer for impeller metals FV520B [J]. 吉林大学学报(工学版), 2018, 48(3): 835-844.
[9] LI Chun-ling, FAN Ding, WANG Bin, YU Shu-rong. 5A06 aluminum alloy and galvanized steel butt welding-brazing by laser with preset filler powder [J]. 吉林大学学报(工学版), 2016, 46(2): 516-521.
[10] XU Tao, LIU Guang-jie, GE Hai-chao, ZHANG Wei, YU Zheng-lei. Modeling heat source of dynamic welding with local coordinate curve path [J]. 吉林大学学报(工学版), 2014, 44(6): 1704-1709.
[11] WANG Wen-quan, SHANG Yan-geng, LI Xiu-juan, WANG Chun-sheng, ZHANG Gui-lan. Microstructure and property of laser welded 650 MPa transformation induced plasticity steel sheet [J]. , 2012, 42(05): 1203-1207.
[12] GU Zheng-wei, YU Si-bin, HAN Li-jun, MENG Jia, SHEN Yong-bo, XU Hong. Effect of welding speed on microstructure and micro hardness of the weld seam of laser welded ultra-high strength steel [J]. , 2012, (03): 656-659.
[13] GU Zheng-wei, YU Si-bin, HAN Li-jun, MENG Jia, XU Hong. Laser lap-welding performance of ultra-high strength steel and micro-alloy steel [J]. 吉林大学学报(工学版), 2012, 42(02): 349-353.
[14] MIAO Hong, ZUO Dun-wen, WANG Min, ZHANG Rui-hong, WANG Hong-feng. Effect of technological parameters on quality of Q460 high-strength-steel internal thread formed by cold extrusion [J]. 吉林大学学报(工学版), 2012, 42(01): 68-73.
[15] KONG De-jun, ZHOU Chao-zheng, HU Ai-ping. Effect of laser shock on the mechanical properties of weld joint of X70 steel pipeline [J]. 吉林大学学报(工学版), 2011, 41(05): 1507-1512.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!