Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (7): 2193-2202.doi: 10.13229/j.cnki.jdxbgxb.20231132

Previous Articles    

Influence of residual stress on cyclic indentation behavior of materials

Li-jia LI1(),Hong-rui LI1,Peng-shu XIE2,Shi-tong YANG1,Da CUI2(),Yong HU2,3   

  1. 1.School of Mechatronic Engineering,Changchun University of Technology,Changchun 130012,China
    2.School of Mechanical and Aerospace Engineering,Jilin University,Changchun 130022,China
    3.Key Laboratory of CNC Equipment Reliability Ministry of Education,Jilin University,Changchun 130022,China
  • Received:2023-10-08 Online:2025-07-01 Published:2025-09-12
  • Contact: Da CUI E-mail:lilijia@ccut.edu.cn;cuida@jlu.edu.cn

Abstract:

In order to investigate the influence pattern of residual stress on material indentation response, this paper investigates the mechanical behavior and cyclic deformation characteristics of materials under residual stress in indentation experiments using finite element simulation and cyclic indentation method, the influence of material mechanical property parameters and residual stress on the cyclic indentation behavior of materials is revealed. The variation of material mechanical properties with yield stress, hardening index and residual stress was obtained by single factor indentation experiments, and the dynamic behavior of materials with different yield stress, hardening index and residual stress under cyclic loading is also studied. The results show that the indentation depth and plastic displacement decrease with the increase of yield stress, hardening index and residual stress. In the cycle, the indentation depth and plastic displacement increase and stabilize faster with the increase of cycle weeks.

Key words: nanoindentation, residual stress, cyclic deformation, mechanical behavior

CLC Number: 

  • TB303

Fig.1

Finite element simulation model"

Table 1

Parameter value range"

性能参数取值
弹性模量/GPa72
泊松比0.33
屈服应力/MPa300、400、500
硬化指数0.1、0.2、0.3

Fig.2

Load-displacement curves for different friction coefficient"

Fig.3

Cyclic load amplitude"

Fig.4

Cyclic indentation load-displacement curve"

Fig.5

hmax and Wpchange curve with N"

Fig.6

Relationship between hmax,hc,hf and N under yield stress and hardening index"

Fig.7

Relationship between hmax, hc, hf and N under residual stress"

Fig.8

Relationship between he, hp, HT and N under yield stress"

Fig.9

Relationship between he, hp, HT and N under hardening index"

Fig.10

Relationship between he, hp, HT and N underresidual stress"

Fig.11

hmax changes with N"

Table 2

Fitting parameter table"

a1b1R2 -1a2b2R2 -2
hmax5.698 060.008 150.999 80.006 115.746 450.986 81
hc5.437 250.009 880.993 780.007 35.491 270.992 94
hf5.259 660.008 930.994 410.006 35.307 530.996 07

Fig.12

HTchanges with N"

[1] 王海斗, 朱丽娜, 徐滨士. 纳米压痕技术检测残余应力[M]. 北京: 科学出版社, 2016.
[2] 王庆明, 孙渊. 残余应力测试技术的进展与动向[J]. 机电工程, 2011, 28(1): 11-15, 41.
Wang Qing-ming, Sun Yuan. Research development on the test methods of residual stress[J]. Journal of Mechanical & Electrical Engineering. 2011, 28(1): 11-15, 41.
[3] 董美伶, 金国, 王海斗, 等. 纳米压痕法测量残余应力的研究现状[J]. 材料导报, 2014, 28(3): 107-113.
Dong Mei-ling, Jin Guo, Wang Hai-dou, et al. The research status of nanoindetation methods for measuring residual stresses[J]. Materials Reports, 2014, 28(3): 107-113.
[4] 王辰辰. 残余应力测试与校准方法研究现状与展望[J]. 计测技术, 2021, 41(2): 56-63.
Wang Chen-chen. Review on measurement and metrology methods of residual stress[J]. Metrology & Measurement Technology, 2021, 41(2): 56-63.
[5] 彭光健, 张泰华. 表面残余应力的仪器化压入检测方法研究进展[J]. 力学学报, 2022, 54(8): 2287-2303.
Peng Guang-jian, Zhang Tai-hua. Progress in instrumented indentation methods for determination of surface residual stress[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2287-2303.
[6] 李聪, 赵宏伟, 孙琳琳. 基于纳米压痕分析的往复扭转载荷下45号钢的力学性能[J]. 吉林大学学报: 工学版, 2019, 49(3): 859-864.
Li Cong, Zhao Hong-wei, Sun Lin-lin. Mechanical property of 45 steel under reciprocating torsional load based on nanoindentation analysis[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 859-864.
[7] Tsui T Y, Oliver W C, Pharr G M. Influences of stress on the measurement of mechanical properties using nanoindentation: part Ⅰ . Experimental studies in an aluminum alloy[J]. Journal of Materials Research, 1996, 11: 752-759.
[8] Bolshakov A, Oliver W C, Pharr G M. Influences of stress on the measurement of mechanical properties using nanoindentation: Part Ⅱ . Finie element simulations[J]. Journal of Materials Research, 1996, 11: 760-768.
[9] Peng G, Lu Z, Ma Y, et al. Spherical indentation method for estimating equibiaxial residual stress and elastic-plastic properties of metals simultaneously[J]. Journal of Materials Research, 2018, 33(8): 884-897.
[10] Peng G, Xu F, Chen J, et al. Evaluation of non-equibiaxial residual stresses in metallic materials via instrumented spherical indentation[J]. Metals, 2020, 10(4): 440.
[11] Greco A, Sgambitterra E, Furgiuele F. A new methodology for measuring residual stress using a modified Berkovich nano-indenter[J]. International Journal of Mechanical Sciences, 2021, 207: No.106662.
[12] Moharrami R, Sanayei M. Developing a method in measuring residual stress on steel alloys by instrumented indentation technique[J]. Measurement, 2020, 158: No.107718.
[13] 李莉佳. 残余应力下金属材料压痕响应的仿真分析与试验研究[D]. 长春: 吉林大学机械与航空航天工程学院, 2022.
Li Li-jia. Simulation analysis and experimental research on indentation response of metal materials under residual stresses[D]. Changchun: School of Mechanical and Aerospace Engineering,Jilin University, 2022.
[14] Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7(6): 1564-1583.
[15] Sakai M. The Meyer hardness: a measure for plasticity?[J]. Journal of Materials Research, 1999, 14(9): 3630-3639.
[16] Oyen M L. Nanoindentation hardness of mineralized tissues[J]. Journal of Biomechanics, 2006, 39(14): 2699-2702.
[17] Alao A R, Yin L. Assessment of elasticity, plasticity and resistance to machining-induced damage of porous pre-sintered zirconia using nanoindentation techniques[J]. Journal of Materials Science & Technology, 2016, 32(5): 402-410.
[18] Xu Z H, Li X. Estimation of residual stresses from elastic recovery of nanoindentation[J]. Philosophical Magazine, 2006, 86(19): 2835-2846.
[1] Chang-long ZHAO,Chen MA,Jun-bao YANG,Qin-xiang ZHAO,Xiao-yu JIA,Hong-nan MA. Influence of pre⁃set surface texture on laser cladding of 316L coatings [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(3): 899-911.
[2] Xing WEI,Ya-jie GAO,Zhi-rui KANG,Yu-chen LIU,Jun-ming ZHAO,Lin XIAO. Numerical simulation of residual stress field of stud girth weld in low temperature environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 198-208.
[3] Wei-hua WANG,Yong-bin ZHU,Shen-jun QI,Jing-si HUO,Xiu-quan GUO,Zhen-an ZHONG. Mechanical behavior on friction energy dissipation reduced beam section connection of steel beams [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1400-1410.
[4] Kai-yu LUO,Jun-cheng CHEN,Chang-yu WANG,Jin-zhong LU. Effect of spot diameteron corrosion resistance of aluminum alloy subjected to laser shock peening [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 501-510.
[5] Chun-guo LIU,Xiao-tong YU,Tao YUE,Dong-lai LI,Ming-zhe ZHANG. Springback prediction for double-curvature stiffened panel during milling [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 188-199.
[6] Jin⁃zhong LU,Wan⁃ting ZHOU,Sheng⁃yang ZHANG,Yi⁃kai SHAO,Chang⁃yu WANG,Kai⁃yu LUO. Effect of coverage layer on corrosion resistance of 6061⁃T6 aluminum alloy subjected to laser shock peening [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 842-849.
[7] LIU Zi-wu, LI Jian-feng. Erosion damage and evaluation of remanufacturing cladding layer for impeller metals FV520B [J]. 吉林大学学报(工学版), 2018, 48(3): 835-844.
[8] ZHANG Lin, ZHAO Hong-wei, YANG Yi-han, MA Zhi-chao, HUANG Hu, MA Zhi-chao. Molecular dynamics simulation of nanoindentation of single-layer graphene sheet [J]. 吉林大学学报(工学版), 2013, 43(06): 1558-1565.
[9] JIA Hong-lei, WANG Yue-ming, ZHANG Zhi-jun, SUN Ji-yu. One-dimensional differential constitutive equation and viscoelastic model of elytra of the dung beetle (Copris ochus Motschulsky) [J]. 吉林大学学报(工学版), 2012, 42(增刊1): 433-436.
[10] MIAO Hong, ZUO Dun-wen, WANG Min, ZHANG Rui-hong, WANG Hong-feng. Effect of technological parameters on quality of Q460 high-strength-steel internal thread formed by cold extrusion [J]. 吉林大学学报(工学版), 2012, 42(01): 68-73.
[11] LI Chun-liang, WANG Guo-qiang, ZHAO Kai-jun, ZHU Chun-feng. Vertical mechanical behavior on shield tunnel under loads on ground surface [J]. 吉林大学学报(工学版), 2011, 41(增刊2): 180-184.
[12] KONG De-jun, ZHOU Chao-zheng, HU Ai-ping. Effect of laser shock on the mechanical properties of weld joint of X70 steel pipeline [J]. 吉林大学学报(工学版), 2011, 41(05): 1507-1512.
[13] LUO Kai-Yu, LU Jin-Zhong, YIN Chun-Jing, ZHONG Jun-Wei, YAO Hui-Xue, ZHANG Yong-Kang. Properties of LY2 alloy film by laser shock processing [J]. 吉林大学学报(工学版), 2010, 40(02): 467-0470.
[14] JI Jia-Bin, WANG Yi-Qiang, ZHAO Hong-Wei, ZHOU Xiao-Qin, CAO Li, PENG Zhen-Xin. Microtype loading device for insitu nanoindentation test [J]. 吉林大学学报(工学版), 2010, 40(02): 471-0474.
[15] YAO Guo-feng,DING Yan-xia,WANG Min . Effect of interface topography on residual stress [J]. 吉林大学学报(工学版), 2009, 39(03): 704-0707.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!