吉林大学学报(工学版) ›› 2009, Vol. 39 ›› Issue (06): 1469-1474.

• paper • Previous Articles     Next Articles

Headway and fare optimization model for feeder bus of rail transit

XU Wang-tu,HE Shi-wei,SONG Rui   

  1. School of Traffic and Transportation,Beijing Jiaotong University,Beijing 100044|China
  • Received:2008-02-25 Online:2009-11-01 Published:2009-11-01

Abstract:

The cost and income of the feeder bus system of the rail transit were analyzed in consideration of the elasticity of the passenger demand for the headway and the fare of the feeder bus, and a nonlinear programming model as well as its solution method was proposed taking the maximization of the gross system profit as the target function and the passenger volume share of the rail transit as the constraint conditions. The numerical case study and the parametric sensitivity analysis showed, there is a local optimingation solution of the model in the frame of constraint conditions. The gross system profit gradually decreases in various rates with the increase of the average single passenger waiting time and the bus fare. The sensitivity of the passenger to the increase or decrease of the fare is more strong than that of the headway.

Key words: engineering of communication and transportation system, rail transit;feeder buses, headway, fare, gross system profit

CLC Number: 

  • U491.1
[1] QU Da-yi,YANG Jing-ru,BING Qi-chun,WANG Wu-lin,ZHOU Jing-chun. Arterial traffic offset optimization based on queue characteristics at adjacent intersections [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1685-1693.
[2] LI Zhi-hui, HU Yong-li, ZHAO Yong-hua, MA Jia-lei, LI Hai-tao, ZHONG Tao, YANG Shao-hui. Locating moving pedestrian from running vehicle [J]. 吉林大学学报(工学版), 2018, 48(3): 694-703.
[3] SHAO Sai, BI Jun, GUAN Wei. Electric vehicle routing problem with charging and dynamic customer demands [J]. 吉林大学学报(工学版), 2017, 47(6): 1688-1695.
[4] SUN Zong-yuan, FANG Shou-en. Hierarchical clustering algorithm of moving vehicle trajectories in entrances and exits freeway [J]. 吉林大学学报(工学版), 2017, 47(6): 1696-1702.
[5] ZHANG Zhe, JIA Li-min, QIN Yong, YUN Ting. Equalization-based feedback control model of pedestrian counter flow [J]. 吉林大学学报(工学版), 2017, 47(6): 1728-1737.
[6] LI Xian-sheng, MENG Fan-song, ZHENG Xuan-lian, REN Yuan-yuan, YAN Jia-hui. Driver's visual characteristics based on stress response [J]. 吉林大学学报(工学版), 2017, 47(5): 1403-1410.
[7] LI Zhi-hui, WANG Kun-wei, SONG Xian-min, LIU Xin-shan, SHEN Yao, LUO Rui-qi. Roundabout travel time prediction based on characteristics of lane choosing [J]. 吉林大学学报(工学版), 2017, 47(5): 1411-1419.
[8] LI Ye, WANG Wei, XING Lu, WANG Hao, DONG Chang-yin. Improving traffic efficiency of highway by integration of adaptive cruise control and variable speed limit control [J]. 吉林大学学报(工学版), 2017, 47(5): 1420-1425.
[9] WAN Ping, WU Chao-zhong, LIN Ying-zi, MA Xiao-feng. Driving anger detection based on multivariate time series features of driving behavior [J]. 吉林大学学报(工学版), 2017, 47(5): 1426-1435.
[10] JIANG Pan, YANG Jia-qi, FANG Rui-wei. Bi-level programming model for optimization of urban agglomeration comprehensive transportation corridor layout [J]. 吉林大学学报(工学版), 2017, 47(4): 1061-1067.
[11] WANG Lei, LIU Zhao, LIU Yang. Shift quality evaluation based on human response spectrum analysis [J]. 吉林大学学报(工学版), 2017, 47(3): 725-730.
[12] ZHAO Xue-yu, YANG Jia-qi, PENG Ya-mei. Competitive and cooperative relationship evolution mechanism between urban rail transit and traditional bus [J]. 吉林大学学报(工学版), 2017, 47(3): 756-764.
[13] QU Da-yi, WAN Meng-fei, LI Juan, WANG Jin-zhan, XU Xiang-hua. Offset optimization of arterial traffic based on traffic-wave theory and it control method [J]. 吉林大学学报(工学版), 2017, 47(2): 429-437.
[14] WU Wen-jing, WANG Zhan-zhong, MA Fang-wu. Simulation analysis of evolutionary game of pedestrians' group behaviors under influence of herd behavior: in case of crossing behavior [J]. 吉林大学学报(工学版), 2017, 47(1): 92-96.
[15] SHANG Qiang, YANG Zhao-sheng, ZHANG Wei, Bing Qi-chun, ZHOU Xi-yang. Short-term traffic flow prediction based on singular spectrum analysis and CKF-LSSVM [J]. 吉林大学学报(工学版), 2016, 46(6): 1792-1798.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!