吉林大学学报(理学版) ›› 2024, Vol. 62 ›› Issue (3): 593-605.

• • 上一篇    下一篇

基于特征图网络和多种生物信息预测关键蛋白质的深度学习框架

刘桂霞, 曹心恬, 赵贺   

  1. 吉林大学 计算机科学与技术学院,  符号计算与知识工程教育部重点实验室, 长春 130012
  • 收稿日期:2023-06-06 出版日期:2024-05-26 发布日期:2024-05-26
  • 通讯作者: 刘桂霞 E-mail:liugx@jlu.edu.cn

Deep Learning Framework for Predicting Essential  Proteins Based on Feature Graph Network and Multiple Biological Information

LIU Guixia, CAO Xintian, ZHAO He   

  1. Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education,College of Computer Science and Technology, Jilin University, Changchun 130012, China
  • Received:2023-06-06 Online:2024-05-26 Published:2024-05-26

摘要: 针对生物实验识别关键蛋白质费时费力, 使用计算方法预测关键蛋白质无法有效整合生物信息的问题, 提出一个深度学习框架. 首先利用网络拓扑结构、 基因表达数据和GO(gene ontology)注释数据构建加权蛋白质相互作用网络; 然后分别使用特征图网络和双向长短期记忆细胞从亚细胞定位数据、 蛋白质复合物数据和基因表达数据中提取特征向量; 最后将这些特征向量输入到任务学习层预测关键蛋白质. 实验结果表明, 相比于现有的计算方法, 该方法预测性能更好.

关键词: 关键蛋白质, 特征图网络, 亚细胞定位, 基因表达, GO注释, 蛋白质复合物

Abstract: Aiming at the problem that  identifying  essential proteins in  biological experiments was time-consuming and laborious, and using
 computational methods to predict essential proteins could not effectively  integrate biological information,  we proposed  a deep learning framework. Firstly, a weighted protein interaction network was constructed by using network topology structure, gene expression data and gene ontology (GO) annotated data. Secondly, feature vectors were extracted from subcellular localization data, protein complex data and gene expression data by using feature graph network and bi-directional long short-term memory cells, respectively. Finally,  these feature vectors were input into the task learning layer to predict essential proteins. The experimental results show that, compared with  existing computational methods, the proposed method has better predictive performance.

Key words: essential protein, feature graph network, subcellular localization, gene expression, GO annotation, protein complex

中图分类号: 

  • TP391