吉林大学学报(理学版) ›› 2024, Vol. 62 ›› Issue (4): 842-850.

• • 上一篇    下一篇

具p-Laplace算子的分数阶脉冲微分方程奇异边值问题的解

赵甜1, 胡卫敏1,2, 刘元彬3   

  1. 1. 伊犁师范大学 数学与统计学院, 新疆 伊宁 835000; 2. 伊犁师范大学 应用数学研究所, 新疆 伊宁 835000; 
    3. 新疆工程学院 数理学院, 乌鲁木齐 830023
  • 收稿日期:2023-11-09 出版日期:2024-07-26 发布日期:2024-07-26
  • 通讯作者: 胡卫敏 E-mail:Hwm680702@163.com

Solutions of Singular Boundary Value Problems for Fractional Impulsive Differential Equations with p-Laplacian Operator

ZHAO Tian1, HU Weimin1,2, LIU Yuanbin3   

  1. 1. School of Mathematics and Statistics, Yili Normal University, Yining 835000, Xinjiang Uygur Autonomous Region, China; 
    2. Institute of Applied Mathematics, Yili Normal University, Yining 835000, Xinjiang Uygur Autonomous Region,  China;
    3. School of Mathematics and Physics, Xinjiang Institute of Engineering, Urumqi 830023, China
  • Received:2023-11-09 Online:2024-07-26 Published:2024-07-26

摘要: 用Banach压缩映像原理和Krsnoasel’skii不动点定理证明一类具有p-Laplace算子的分数阶脉冲微分方程奇异边值问题解的唯一性和存在性.

关键词: 分数阶微分方程, 脉冲, 不动点定理, 奇异边值问题, p-Laplace算子

Abstract: We proved  the uniqueness and existence of solutions for a class of singular boundary value problems of fractional impulsive differential equations with p-Laplacian operators by using Banach contraction mapping principle and Krsnoasel’skii fixed point theorem.

Key words: fractional differential equation, impulse, fixed point theorem, singular boundary value problem, p-Laplacian operato

中图分类号: 

  • O175.8