吉林大学学报(理学版) ›› 2025, Vol. 63 ›› Issue (5): 1387-1396.

• • 上一篇    下一篇

桁架穹顶复杂优化求解的遗传算法

张蕾1, 仲洋2, 曹梦萱3, 卢婧4, 韩霄松3   

  1. 1. 吉林大学 发展规划处, 长春 130012; 2. 中国电力工程顾问集团 东北电力设计院有限公司, 长春 130021;
    3. 吉林大学 软件学院, 长春 130012; 4. 吉林大学 研究生院, 长春 130012
  • 收稿日期:2025-03-28 出版日期:2025-09-26 发布日期:2025-09-26
  • 通讯作者: 韩霄松 E-mail: hanxiaosong@jlu.edu.cn

Genetic Algorithm for Complex Optimization Solution of Truss Dome

ZHANG Lei1, ZHONG Yang2, CAO Mengxuan3, LU Jing4, HAN Xiaosong3   

  1. 1. Division of Development and Strategic Planning, Jilin University, Changchun 130012, China;
    2. Northeast Electric Power Design Institute Co., Ltd., China Electric Power Engineering Consulting Group, Changchun 130021, China; 
    3. College of Software, Jilin University, Changchun 130012, China; 4. Gradute School, Jilin University, Changchun 130012, China
  • Received:2025-03-28 Online:2025-09-26 Published:2025-09-26

摘要: 针对传统遗传算法在复杂高维优化问题中适应度计算代价较高的问题, 提出一种基于流形学习与多元线性回归的改进遗传算法Gamma. 
Gamma算法通过流形学习对种群数据进行降维, 并结合AP聚类(affinity propagation clustering)与多元线性回归模型, 减少适应度函数的计算次数, 提高算法优化效率. 实验结果表明, Gamma算法在桁架穹顶结构优化等复杂工程及多个经典Benchmark函数上, 均以较少的适应度调用次数达到了与传统方法相近的优化效果, 在处理高维优化问题上应用前景良好, 能有效提高计算效率, 降低时间成本.

关键词: 遗传算法, 流形学习, 代理模型, 复杂优化问题

Abstract: Aiming at the problem of  the high computational cost of fitness in traditional genetic algorithms for complex high-dimensional optimization problems, we proposed an improved genetic algorithm Gamma based on manifold learning and multiple linear regression.  The Gamma algorithm reduced the  dimensionality of  the population data through manifold learning, and combined AP clustering with a multiple linear regression model to reduce the calculation times of fitness function and improve algorithm optimization efficiency. Experimental results show that the Gamma algorithm achieves optimization results similar to traditional methods with fewer fitness calls in complex engineering such as the optimization of truss dome structures and multiple  classic Benchmark functions. It has a  promising application prospect in handling with complex high-dimensional optimization problems, effectively enhancing computational efficiency and reducing time costs.

Key words: genetic algorithm, manifold learning, surrogate model, complex optimization problem

中图分类号: 

  • TP181