1 |
HAANEN J B, ROBERT C. Immune checkpoint inhibitors[J]. Prog Tumor Res, 2015, 42: 55-66.
|
2 |
BRUNET J F, DENIZOT F, LUCIANI M F, et al. A new member of the immunoglobulin superfamily: CTLA-4[J]. Nature, 1987, 328(6127): 267-270.
|
3 |
AGATA Y, KAWASAKI A, NISHIMURA H, et al. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes[J]. Int Immunol, 1996, 8(5): 765-772.
|
4 |
王明月, 王 浩, 王冬梅, 等. SIRPα-GFP真核表达载体构建及其在HEK293T细胞中的表达[J]. 吉林大学学报(医学版), 2020, 46(5): 925-929, 1111.
|
5 |
刘宇轩, 黄莉莉, 杨馥旭, 等. LAG3慢病毒质粒构建及其稳定转染细胞系的建立[J]. 吉林大学学报(医学版), 2022, 48(1): 136-141.
|
6 |
WEISKOPF K. Cancer immunotherapy targeting the CD47/SIRPα axis[J]. Eur J Cancer,2017, 76: 100-109.
|
7 |
BAGCHI S, YUAN R, ENGLEMAN E G. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance[J]. Annu Rev Pathol, 2021, 16: 223-249.
|
8 |
YU X, HARDEN K, GONZALEZ L C, et al. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells[J]. Nat Immunol, 2009, 10(1): 48-57.
|
9 |
LEVIN S D, TAFT D W, BRANDT C S, et al. Vstm3 is a member of the CD28 family and an important modulator of T-cell function[J]. Eur J Immunol, 2011, 41(4): 902-915.
|
10 |
朱 伟, 张小勇, 张大千,等. 靶向适应性免疫治愈慢性乙型肝炎策略及进展[J].临床肝胆病杂志,2021,37(5):1016-1021.
|
11 |
STENGEL K F, HARDEN-BOWLES K, YU X,et al. Structure of TIGIT immunoreceptor bound to poliovirus receptor reveals a cell-cell adhesion and signaling mechanism that requires cis-trans receptor clustering[J]. Proc Natl Acad Sci U S A, 2012, 109(14): 5399-5404.
|
12 |
JOLLER N, LOZANO E, BURKETT P R, et al. Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses[J]. Immunity, 2014, 40(4): 569-581.
|
13 |
LI M, XIA P Y, DU Y, et al. T-cell immunoglobulin and ITIM domain (TIGIT) receptor/poliovirus receptor (PVR) ligand engagement suppresses interferon-γ production of natural killer cells via β-arrestin 2-mediated negative signaling[J].J Biol Chem, 2014, 289(25): 17647-17657.
|
14 |
陈晓君, 刘彦权, 黄素蓉, 等. 母细胞性浆细胞样树突细胞肿瘤的研究进展[J].解放军医学杂志,2021,46(10):1040-1044.
|
15 |
JOHNSTON R J, COMPS-AGRAR L, HACKNEY J, et al. The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function[J]. Cancer Cell, 2014, 26(6): 923-937.
|
16 |
王 欣, 赵玉珠. 高龄甲状腺癌患者促甲状腺激素抑制方案对预后及T细胞免疫因子的影响研究[J].中国实用内科杂志,2021,41(11):978-980.
|
17 |
RECHES A, OPHIR Y, STEIN N, et al. Nectin4 is a novel TIGIT ligand which combines checkpoint inhibition and tumor specificity[J]. J Immunother Cancer, 2020, 8(1): e000266.
|
18 |
BOTTINO C, CASTRICONI R, PENDE D, et al. Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule[J].J Exp Med,2003,198(4):557-567.
|
19 |
LI Y C, ZHOU Q, SONG Q K, et al. Overexpression of an immune checkpoint (CD155) in breast cancer associated with prognostic significance and exhausted tumor-infiltrating lymphocytes: a cohort study[J]. J Immunol Res, 2020, 2020: 3948928.
|
20 |
YEO J, KO M, LEE D H, et al. TIGIT/CD226 axis regulates anti-tumor immunity[J]. Pharmaceuticals (Basel), 2021, 14(3): 200.
|
21 |
O’DONNELL J S, MADORE J, LI X Y, et al. Tumor intrinsic and extrinsic immune functions of CD155[J]. Semin Cancer Biol, 2020, 65: 189-196.
|
22 |
FREED-PASTOR W A, LAMBERT L J, ELY Z A, et al. The CD155/TIGIT axis promotes and maintains immune evasion in neoantigen-expressing pancreatic cancer[J]. Cancer Cell, 2021, 39(10): 1342-1360.e14.
|
23 |
CHAUVIN J M, ZAROUR H M. TIGIT in cancer immunotherapy[J]. J Immunother Cancer, 2020, 8(2): e000957.
|
24 |
TOOR S M, SASIDHARAN NAIR V, DECOCK J,et al.Immune checkpoints in the tumor microenvironment[J]. Semin Cancer Biol, 2020, 65: 1-12.
|
25 |
POSTOW M A, CALLAHAN M K, WOLCHOK J D. Immune checkpoint blockade in cancer therapy[J]. J Clin Oncol, 2015, 33(17): 1974-1982.
|
26 |
STELMACHOWSKA-BANAŚ M, CZAJKA-ORANIEC I. Management of endocrine immune-related adverse events of immune checkpoint inhibitors: an updated review[J]. Endocr Connect, 2020, 9(10): R207-R228.
|
27 |
INOZUME T, YAGUCHI T, FURUTA J, et al. Melanoma cells control antimelanoma CTL responses via interaction between TIGIT and CD155 in the effector phase[J]. J Invest Dermatol, 2016, 136(1): 255-263.
|
28 |
HU F, WANG W Q, FANG C H, et al. TIGIT presents earlier expression dynamic than PD-1 in activated CD8+T cells and is upregulated in non-small cell lung cancer patients[J].Exp Cell Res,2020,396(1): 112260.
|
29 |
ZHANG T, WANG J H, ZHOU X C, et al. Increased expression of TIGIT on CD4+T cells ameliorates immune-mediated bone marrow failure of aplastic anemia[J]. J Cell Biochem, 2014, 115(11): 1918-1927.
|
30 |
CHAUVIN J M, PAGLIANO O, FOURCADE J,et al. TIGIT and PD-1 impair tumor antigen-specific CD8⁺ T cells in melanoma patients[J].J Clin Invest, 2015, 125(5): 2046-2058.
|
31 |
KURTULUS S, SAKUISHI K, NGIOW S F, et al. TIGIT predominantly regulates the immune response via regulatory T cells[J]. J Clin Invest, 2015, 125(11): 4053-4062.
|
32 |
ATTALLA K, FARKAS A M, ANASTOS H, et al. TIM-3 and TIGIT are possible immune checkpoint targets in patients with bladder cancer[J]. Urol Oncol Semin Orig Investig, 2020,40(9):403-406.
|