1 |
TSAO C W, ADAY A W, ALMARZOOQ Z I, et al. Heart disease and stroke statistics-2022 update: a report from the American heart association[J]. Circulation, 2022, 145(8): e153-e639.
|
2 |
KRONENBERG F, MORA S, STROES E S G, et al. Lipoprotein(a) in atherosclerotic cardiovascular disease and aortic stenosis: a European Atherosclerosis Society consensus statement[J]. Eur Heart J, 2022, 43(39): 3925-3946.
|
3 |
TSELEPIS A D. Treatment of lp(a): is it the future or are we ready today?[J]. Curr Atheroscler Rep, 2023, 25(10): 679-689.
|
4 |
TSIMIKAS S, FAZIO S, FERDINAND K C, et al. NHLBI working group recommendations to reduce lipoprotein(a)-mediated RiskofCardiovascular disease and AorticStenosis[J]. J Am Coll Cardiol, 2018, 71(2): 177-192.
|
5 |
北京心脏学会. 脂蛋白(a)与心血管疾病风险关系及临床管理的专家科学建议[J]. 中国循环杂志, 2021, 36(12): 1158-1167.
|
6 |
HAO Y C, DINA C, SMALL A M, et al. Dyslipidemia, inflammation, calcification, and adiposity in aortic stenosis: a genome-wide study[J]. Eur Heart J, 2023, 44(21): 1927-1939.
|
7 |
THANASSOULIS G, CAMPBELL C Y, OWENS D S, et al. Genetic associations with valvular calcification and aortic stenosis[J]. N Engl J Med, 2013, 368(6): 503-512.
|
8 |
刘 宏, 黄 杨, 赵 莉, 等. 脂蛋白a与冠状动脉粥样硬化疾病的研究进展[J]. 中国病理生理杂志, 2023, 39(4): 730-738.
|
9 |
娄 奇, 王 红, 刘广忠. 脂蛋白a在动脉粥样硬化性心血管疾病中的临床研究进展[J]. 中国临床新医学, 2023, 16(1): 91-96.
|
10 |
BERG K. A new serum type system in man: the lp system[J]. Acta Pathol Microbiol Scand, 1963, 59: 369-382.
|
11 |
SALEHEEN D, HAYCOCK P C, ZHAO W, et al. Apolipoprotein(a) isoform size, lipoprotein(a) concentration, and coronary artery disease: a Mendelian randomisation analysis[J]. Lancet Diabetes Endocrinol, 2017, 5(7): 524-533.
|
12 |
李建军. 调脂治疗的新视野: 脂蛋白(a)的临床意义应受到关注[J]. 中华心血管病杂志, 2019, 47(5): 347-350.
|
13 |
NURMOHAMED N S, KRAAIJENHOF J M, STROES E S G. Lp(a): a new pathway to target?[J]. Curr Atheroscler Rep, 2022, 24(11): 831-838.
|
14 |
HU J H, LEI H, LIU L L, et al. Lipoprotein(a), a lethal player in calcific aortic valve disease[J]. Front Cell Dev Biol, 2022, 10: 812368.
|
15 |
MEHTA A, VASQUEZ N, AYERS C R, et al. Independent association of lipoprotein(a) and coronary artery calcification with atherosclerotic cardiovascular risk[J]. J Am Coll Cardiol, 2022, 79(8): 757-768.
|
16 |
PEARSON K, RODRIGUEZ F. Lipoprotein(a) and cardiovascular disease prevention across diverse populations[J]. Cardiol Ther, 2020, 9(2): 275-292.
|
17 |
TRIEU V N, MCCONATHY W J. A two-step model for lipoprotein(a) formation[J]. J Biol Chem, 1995, 270(26): 15471-15474.
|
18 |
DARDIK B N, SCHWARTZKOPF C D, STEVENS D E, et al. A quantitative assay for the non-covalent association between apolipoprotein[a]and apolipoprotein B: an alternative measure of Lp[a]assembly[J]. J Lipid Res, 2000, 41(6): 1013-1019.
|
19 |
LANGSTED A, KAMSTRUP P R, BENN M, et al. High lipoprotein(a) as a possible cause of clinical familial hypercholesterolaemia: a prospective cohort study[J]. Lancet Diabetes Endocrinol, 2016, 4(7): 577-587.
|
20 |
WANG X Y, LI J G, JU J Q, et al. Effect of different types and dosages of statins on plasma lipoprotein(a) levels: a network meta-analysis[J]. Pharmacol Res, 2021, 163: 105275.
|
21 |
SPEER T, RIDKER P M, VON ECKARDSTEIN A, et al. Lipoproteins in chronic kidney disease: from bench to bedside[J]. Eur Heart J, 2021, 42(22): 2170-2185.
|
22 |
HOPEWELL J C, HAYNES R, BAIGENT C. The role of lipoprotein (a) in chronic kidney disease[J]. J Lipid Res, 2018, 59(4): 577-585.
|
23 |
SCHNITZLER J G, ALI L, GROENEN A G, et al. Lipoprotein(a) as orchestrator of calcific aortic valve stenosis[J]. Biomolecules, 2019, 9(12): 760.
|
24 |
YUTZEY K E, DEMER L L, BODY S C, et al. Calcific aortic valve disease: a consensus summary from the Alliance of Investigators on Calcific Aortic Valve Disease[J]. Arterioscler Thromb Vasc Biol, 2014, 34(11): 2387-2393.
|
25 |
HSIEH G, RIZK T, BERMAN A N, et al. The current landscape of lipoprotein(a) in calcific aortic valvular disease[J]. Curr Opin Cardiol, 2021, 36(5): 542-548.
|
26 |
VARVEL S, MCCONNELL J P, TSIMIKAS S. Prevalence of elevated Lp(a) mass levels and patient thresholds in 532 359 patients in the United States[J]. Arterioscler Thromb Vasc Biol, 2016, 36(11): 2239-2245.
|
27 |
MOTAWEA K R, ELHALAG R H, ABOELENEIN M, et al. Association of aortic valve calcification and high levels of lipoprotein (a): systematic review and meta-analysis[J]. Curr Probl Cardiol, 2023, 48(9): 101746.
|
28 |
ZHENG K H, TSIMIKAS S, PAWADE T, et al. Lipoprotein(a) and oxidized phospholipids promote valve calcification in patients with aortic stenosis[J]. J Am Coll Cardiol, 2019, 73(17): 2150-2162.
|
29 |
BURDEYNAYA A L, AFANASIEVA O I, EZHOV M V, et al. Lipoprotein(a) and its autoantibodies in association with calcific aortic valve stenosis[J]. Diseases, 2023, 11(1): 43.
|
30 |
LIU Q Y, YU Y Q, XI R X, et al. Association between lipoprotein(a) and calcific aortic valve disease: a systematic review and meta-analysis[J]. Front Cardiovasc Med, 2022, 9: 877140.
|
31 |
KALTOFT M, LANGSTED A, AFZAL S, et al. Lipoprotein(a) and body mass compound the risk of calcific aortic valve disease[J]. J Am Coll Cardiol, 2022, 79(6): 545-558.
|
32 |
THANASSOULIS G. Lipoprotein (a) in calcific aortic valve disease: from genomics to novel drug target for aortic stenosis[J]. J Lipid Res, 2016, 57(6): 917-924.
|
33 |
KAMSTRUP P R, TYBJÆRG-HANSEN A, NORDESTGAARD B G. Elevated lipoprotein(a) and risk of aortic valve stenosis in the general population[J]. J Am Coll Cardiol, 2014, 63(5): 470-477.
|
34 |
KAISER Y, VAN DER TOORN J E, SINGH S S, et al. Lipoprotein(a) is associated with the onset but not the progression of aortic valve calcification[J]. Eur Heart J, 2022, 43(39): 3960-3967.
|
35 |
MACH F, BAIGENT C, CATAPANO A L, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk[J]. Eur Heart J, 2020, 41(1): 111-188.
|
36 |
TOWLER D A. Lp(a) oxyphospholipids: markers and mediators of vascular mineral metabolism in calcific aortic valve disease[J]. J Am Coll Cardiol, 2019, 73(17): 2163-2165.
|
37 |
KAMSTRUP P R, HUNG M Y, WITZTUM J L, et al. Oxidized phospholipids and risk of calcific aortic valve disease: the Copenhagen general population study[J]. Arterioscler Thromb Vasc Biol, 2017, 37(8): 1570-1578.
|
38 |
RADER D J, BAJAJ A. Lipoprotein(a) and oxidized phospholipids: partners in crime or individual perpetrators in cardiovascular disease? [J]. J Am Coll Cardiol, 2023, 81(18): 1793-1796.
|
39 |
SOLACHE-BERROCAL G, BARRAL-VARELA A M, ARECES-RODRÍGUEZ S, et al. Correlation of micro-computed tomography assessment of valvular mineralisation with histopathological and immunohistochemical features of calcific aortic valve disease[J]. J Clin Med, 2019, 9(1): 29.
|
40 |
DZOBO K E, KRAAIJENHOF J M, STROES E S G, et al. Lipoprotein(a): an underestimated inflammatory mastermind[J]. Atherosclerosis, 2022, 349: 101-109.
|
41 |
DE OLIVEIRA SÁ M P B, CAVALCANTI L R P, PERAZZO Á M, et al. Calcific aortic valve stenosis and atherosclerotic calcification[J]. Curr Atheroscler Rep, 2020, 22(2): 2.
|
42 |
MAHMUT A, BOULANGER M C, HUSSEINI D E, et al. Elevated expression of lipoprotein-associated phospholipase A2 in calcific aortic valve disease: implications for valve mineralization[J]. J Am Coll Cardiol, 2014, 63(5): 460-469.
|
43 |
PERROT N, THÉRIAULT S, RIGADE S, et al. Lipoprotein-associated phospholipase A2 activity, genetics and calcific aortic valve stenosis in humans[J]. Heart, 2020, 106(18): 1407-1412.
|
44 |
BOUCHAREB R, MAHMUT A, NSAIBIA M J, et al. Autotaxin derived from lipoprotein(a) and valve interstitial cells promotes inflammation and mineralization of the aortic valve[J]. Circulation, 2015, 132(8): 677-690.
|
45 |
POGGIO P, SAINGER R, BRANCHETTI E, et al. Noggin attenuates the osteogenic activation of human valve interstitial cells in aortic valve sclerosis[J]. Cardiovasc Res, 2013, 98(3): 402-410.
|
46 |
SCHLOTTER F, DE FREITAS R C C, ROGERS M A, et al. ApoC-Ⅲ is a novel inducer of calcification in human aortic valves[J]. J Biol Chem, 2021, 296: 100193.
|
47 |
CAPOULADE R, TORZEWSKI M, MAYR M, et al. ApoCⅢ-Lp(a) complexes in conjunction with Lp(a)- OxPL predict rapid progression of aortic stenosis[J]. Heart, 2020, 106(10): 738-745.
|
48 |
DE B L M, OORTHUYS A O J, WIEGMAN A, et al. Statin therapy and lipoprotein(a) levels: a systematic review and meta-analysis[J]. Eur J Prev Cardiol, 2022, 29(5): 779-792.
|
49 |
TSIMIKAS S, GORDTS P L S M, NORA C, et al. Statin therapy increases lipoprotein(a) levels[J]. Eur Heart J, 2020, 41(24): 2275-2284.
|
50 |
ABDALWAHAB A, AL-ATTA A, ZAMAN A, et al. Intensive lipid-lowering therapy, time to think beyond low-density lipoprotein cholesterol[J]. World J Cardiol, 2021, 13(9): 472-482.
|
51 |
PARÉ G, ÇAKU A, MCQUEEN M, et al. Lipoprotein(a) levels and the risk of myocardial infarction among 7 ethnic groups[J]. Circulation, 2019, 139(12): 1472-1482.
|
52 |
ALBERS J J, SLEE A, O’BRIEN K D, et al. Relationship of apolipoproteins A-1 and B, and lipoprotein(a) to cardiovascular outcomes: the AIM-HIGH trial (Atherothrombosis Intervention in Metabolic Syndrome with Low HDL/High Triglyceride and Impact on Global Health Outcomes)[J]. J Am Coll Cardiol, 2013, 62(17): 1575-1579.
|
53 |
MORIARTY P M, GRAY J V, GORBY L K. Lipoprotein apheresis for lipoprotein(a) and cardiovascular disease[J]. J Clin Lipidol, 2019, 13(6): 894-900.
|
54 |
SCHETTLER V J J, NEUMANN C L, PETER C, et al. The German lipoprotein apheresis registry (GLAR)-almost 5years on[J]. Clin Res Cardiol , 12(Suppl 1): 44-49.
|
55 |
KHAN T Z, HSU L Y, ARAI A E, et al. Apheresis as novel treatment for refractory angina with raised lipoprotein(a): a randomized controlled cross-over trial[J]. Eur Heart J, 2017, 38(20): 1561-1569.
|
56 |
THOMPSON G R. Recommendations for the use of LDL apheresis[J]. Atherosclerosis, 2008, 198(2): 247-255.
|
57 |
BJÖRKEGREN J L M, LUSIS A J. Atherosclerosis: recent developments[J]. Cell, 2022, 185(10): 1630-1645.
|
58 |
MARSTON N A, GURMU Y, MELLONI G E M, et al. The effect of PCSK9 (proprotein convertase subtilisin/kexin type 9) inhibition on the risk of venous thromboembolism[J]. Circulation, 2020, 141(20): 1600-1607.
|
59 |
O’DONOGHUE M L, FAZIO S, GIUGLIANO R P, et al. Lipoprotein(a), PCSK9 inhibition, and cardiovascular risk[J]. Circulation, 2019, 139(12): 1483-1492.
|
60 |
CAO Y X, LIU H H, LI S, et al. A meta-analysis of the effect of PCSK9-monoclonal antibodies on circulating lipoprotein (a) levels[J]. Am J Cardiovasc Drugs, 2019, 19(1): 87-97.
|
61 |
SHAPIRO M D, MINNIER J, TAVORI H, et al. Relationship between low-density lipoprotein cholesterol and lipoprotein(a) lowering in response to PCSK9 inhibition with evolocumab[J]. J Am Heart Assoc, 2019, 8(4): e010932.
|
62 |
LAMINA C, KRONENBERG F, LP(A)-GWAS-CONSORTIUM. Estimation of the required lipoprotein(a)- lowering therapeutic effect size for reduction in coronary heart disease outcomes: a Mendelian randomization analysis[J]. JAMA Cardiol, 2019, 4(6): 575-579.
|
63 |
VINEY N J, VAN CAPELLEVEEN J C, GEARY R S, et al. Antisense oligonucleotides targeting apolipoprotein(a) in people with raised lipoprotein(a): two randomised, double-blind, placebo-controlled, dose-ranging trials[J]. Lancet, 2016, 388(10057): 2239-2253.
|
64 |
TSIMIKAS S, KARWATOWSKA-PROKOPCZUK E, XIA S T. Lipoprotein(a) reduction in persons with cardiovascular disease. reply[J]. N Engl J Med, 2020, 382(21): e65.
|
65 |
SANTOS R D, RAAL F J, CATAPANO A L, et al. Mipomersen, an antisense oligonucleotide to apolipoprotein B-100, reduces lipoprotein(a) in various populations with hypercholesterolemia: results of 4 phase Ⅲ trials[J]. Arterioscler Thromb Vasc Biol, 2015, 35(3): 689-699.
|
66 |
WRIGHT R S, RAY K K, RAAL F J, et al. Pooled patient-level analysis of inclisiran trials in patients with familial hypercholesterolemia or atherosclerosis[J]. J Am Coll Cardiol, 2021, 77(9): 1182-1193.
|
67 |
RAY K K, TROQUAY R P T, VISSEREN F L J, et al. Long-term efficacy and safety of inclisiran in patients with high cardiovascular risk and elevated LDL cholesterol (ORION-3): results from the 4-year open-label extension of the ORION-1 trial[J]. Lancet Diabetes Endocrinol, 2023, 11(2): 109-119.
|
68 |
SWERDLOW D I, RIDER D A, YAVARI A, et al. Treatment and prevention of lipoprotein(a)-mediated cardiovascular disease: the emerging potential of RNA interference therapeutics[J]. Cardiovasc Res, 2022, 118(5): 1218-1231.
|
69 |
RIDER D A, EISERMANN M, LÖFFLER K, et al. Pre-clinical assessment of SLN360, a novel siRNA targeting LPA, developed to address elevated lipoprotein(a) in cardiovascular disease [J]. Atherosclerosis, 2022, 349: 240-247.
|
70 |
NISSEN S E, WOLSKI K, BALOG C, et al. Single ascending dose study of a short interfering RNA targeting lipoprotein(a) production in individuals with elevated plasma lipoprotein(a) levels[J]. JAMA, 2022, 327(17): 1679-1687.
|
71 |
KOREN M J, MORIARTY P M, BAUM S J, et al. Preclinical development and phase 1 trial of a novel siRNA targeting lipoprotein(a)[J]. Nat Med, 2022, 28(1): 96-103.
|
72 |
O’DONOGHUE M L, ROSENSON R S, GENCER B, et al. Small interfering RNA to reduce lipoprotein(a) in cardiovascular disease[J]. N Engl J Med, 2022, 387(20): 1855-1864.
|
73 |
SCHNITZLER J G, HOOGEVEEN R M, ALI L, et al. Atherogenic lipoprotein(a) increases vascular glycolysis, thereby facilitating inflammation and leukocyte extravasation[J]. Circ Res, 2020, 126(10): 1346-1359.
|
74 |
WANG S Y, YU H J, GAO J, et al. PALMD regulates aortic valve calcification via altered glycolysis and NF-κB-mediated inflammation[J]. J Biol Chem, 2022, 298(5): 101887.
|