[1] TORRES N, GUEVARA-CRUZ M, VELAZQUEZ-VILLEGAS L A, et al. Nutrition and Atherosclerosis[J]. Arch Med Res, 2015, 46(5):408-426. [2] MITRA R, ONEIL G L, HARDING I C, et al. Glycocalyx in atherosclerosis-relevant endothelium function and as a therapeutic target[J]. Curr Atheroscler Rep, 2017, 19(12):63. [3] YAO Z. Frontiers in atherosclerosis, heart disease and diabetes[J]. Cardiovasc Hematol Disord Drug Targets, 2014, 14(2):87-88. [4] ZHAO J, YU QX, KONG W, et al. The urotensin Ⅱ receptor antagonist, urantide, protects against atherosclerosis in rats[J]. Exp Ther Med, 2013, 5(6):1765-1769. [5] LU R, YUAN T, WANG Y, et al. Spontaneous severe hypercholesterolemia and atherosclerosis lesions in rabbits with deficiency of low-density lipoprotein receptor(LDLR) on exon 7[J]. EBioMedicine, 2018, 36:29-38. [6] MICKIEWICZ A, BOROWIEC-WOLNA J, BACHORSKI W, et al. Long-term lipoprotein apheresis in the treatment of severe familial hypercholesterolemia refractory to high intensity statin therapy:Three year experience at a lipoprotein apheresis centre[J]. Cardiol J, 2018, 9(7):1-23. [7] CAO F, ZERVOU S, LYQATE C A. The creatine kinase system as a therapeutic target for myocardial ischaemia-reperfusion injury[J]. Biochem Soc Trans, 2018, 46(5):1119-1127. [8] 赵娟,宋成军,姜菊花,等.Urantide对实验性动脉粥样硬化大鼠肝脏的影响[J].中国老年学杂志,2014,34(4):940-942. [9] ZHAO J, XIE L D, SONG C J, et al. Urantide improves atherosclerosis by controlling C-reactive protein, monocyte chemotactic protein-1and transforming growth factor-Urantide improves atherosclerosis by controlling Creactive protein, monocyte chemotactic protein-1 and transforming growth factor-β expression in rats[J]. Therapeut Med, 2014, 7(10):1647-1652. [10] GUO Y, YUAN W, YU B, et al. Synthetic high-density lipoprotein-mediated targted delivery of liver x receptors agonist promotes atherosclerosis regression[J]. EBioMedicine, 2018, 28:225-233. [11] KEYAMURA Y, NAQANO C, KOHASHI M, et al. Dietary cholesterol atherogenic changes in juvenile rabbits[J]. Biol Pharm Bull, 2015, 38(5):785-788. [12] GO G W. Low-density lipoprotein receptor-related protein 6(LRP6) is a novel nutreitional therapeutic target for hyperlipidemia,non-alcohilic, fatty liver disease and atherosclerosis[J]. Nutrients, 2015, 7(6):4453-4464. [13] SOBENIN I A, SALONEN J T, ZHELANKIN A V, et al. Low density lipoprotein-containing circulating immune complexes:role in atherosclerosis and diagnostic value[J]. Biomed Res Int, 2014, 2014:205697. [14] HU J, XI D, ZHAO J, et al. High-density lipoprotein and inflammation and its significance to atherosclerosis[J]. Am J Med Sci, 2016, 352(4):408-415. [15] FEIQ J E, HEWINQ B, SMITH J D, et al. High-density lipoprotein and atherosclerosis regression:evidence from preclinical and clinical studies[J]. Circ Res, 2014, 114(1):205-213. [16] 江志奎,朱华庆,周青,等.动脉粥样硬化兔模型血液中乳酸脱氢酶和肌酸激酶的动态分析[J].安徽医科大学学报,2004,39(1):12-15. [17] 马宏昆,张文.动脉粥样硬化性肾动脉狭窄的评估与干预[J].中国实用内科杂志,2018,38(12):1203-1207. [18] ALEVRIADOU B R, SHANMUGHAPRIYA S, PATEL A, et al. Mitochondrial Ca2+ transport in the endotheliun:regulation by ions, redox signaling and mechanical forces[J]. J R Soc Interface, 2017, 14(137):1-15. [19] SADDOUK F Z, GINNAN R, SINQER H A. Ca2+/calmodulin-dependent protein kinase Ⅱ in vascular smooth muscle[J]. Adv Pharmacol, 2017, 78(10):171-202. [20] TAYLOR M S, CHOI C S, BAYAZID L, et al. Changes in vascular reactivity and endothelial Ca2+ dynamics with chronic low flow[J]. Microcirculation, 2017, 24(3):1-24. [21] SU J, ZHOU H, LIU X, et al. OxLDL antibody inhibits MCP-1 release in monocytes/macrophages by regulating Ca2+/K+ channel flow[J]. J Cell Mol Med, 2017, 21(5):929-940. [22] BRYAN R, KATHERINE M, ADEL G. Role of urotensin Ⅱ in health and disease[J]. Am J Physiol Regul Integer Comp Physiol, 2010, 298(5):R1156-R1172. |