[1] MITSON M, KELLEY L A, STERNBERG M J, et al. Functional significance of mutations in the Snf2 domain of ATRX[J]. Hum Mol Genet, 2011, 20(13):2603-2610. [2] KOSCHMANN C, CALINESCU A A, NUNEZ F J, et al. ATRX loss promotes tumor growth and impairs nonhomologous end joining DNA repair in glioma[J]. Sci Transl Med, 2016, 8(328):328ra28. [3] LAW M J, LOWER K M, VOON H P, et al. ATR-X syndrome protein targets tandem repeats and I nfluences allele-specific expression in a size-dependent manner[J]. Cell, 2010, 143(3):367-378. [4] DUC C, BENOIT M, DÉTOURN G, et al. Arabidopsis ATRX modulates H3.3 occupancy and fine-tunes gene expression[J]. Plant Cell, 2017, 29(7):1773-1793. [5] MUKHERJEE J, JOHANNESSEN T C, OHBA S, et al. Mutant IDH1 cooperates with ATRX loss to drive the alternative lengthening of telomere phenotype in glioma[J]. Cancer Res, 2018, 78(11):2966-2977. [6] VUONG H G, TRAN T T K, NGO H T T, et al. Prognostic significance of genetic biomarkers in isocitrate dehydrogenase-wild-type lower-grade glioma:the need to further stratify this tumor entity-a meta-analysis[J]. Eur J Neurol, 2019, 26(3):379-387. [7] 龚守良. 医学放射生物学[M]. 4版. 北京:中国原子能出版社, 2015. [8] KUEFNER M A, BRAND M, ENGERT C, et al. Radiation induced DNA double-strand breaks in radiology[J]. Rofo, 2015, 187(10):872-878. [9] CAMERO S, CECCARELLI S, DE FELICE F, et al. PARP inhibitors affect growth, survival and radiation susceptibility of human alveolar and embryonal rhabdomyosarcoma cell lines[J]. J Cancer Res Clin Oncol, 2019,145(1):137-152. [10] LILLIAN C D, SALAHUDDIN S, KRISTINA H S. Sgs1 binding to Rad51 stimulates homology-directed DNA repair in Saccharomyces cerevisiae[J]. Genetics, 2018, 208(1):125-138. [11] VOON H P, HUGHES J R, RODE C, et al. ATRX plays a key role in maintaining silencing at interstitial heterochromatic loci and imprinted genes[J]. Cell Rep, 2015, 11(3):405-418. [12] NOH K M, MAZE I, ZHAO D, et al. ATRX tolerates activity-dependent histone H3 methyl/phos switching to maintain repetitive element silencing in neurons[J]. Proc Natl Acad Sci U S A, 2015, 112(22):6820-6827. [13] DE LA FUENTE R, BAUMANN C, VIVEIROS M M. Chromatin structure and ATRX function in mouse oocytes[J]. Results Probl Cell Differ, 2012, 55:45-68. [14] RATNAKUMAR K, BERNSTEIN E. ATRX:the case of a peculiar chromatin remodeler[J]. Epigenetics, 2013, 8(1):3-9. [15] LUO J, SI Z Z, LI T, et al. MicroRNA-146a-5p enhances radiosensitivity in hepatocellular carcinoma through replication protein A3 induced activation of the DNA repair pathway [J]. Am J Physiol Cell Physiol, 2019, 316(3):C299-C311. [16] NAKANO T, XU X, SALEM A M H, et al. Radiation-induced DNA-protein cross-links:Mechanisms and biological significance[J]. Free Radic Biol Med, 2017, 107:136-145. [17] SAGE E, SHIKAZONO N. Radiation-induced clustered DNA lesions:Repair and mutagenesis[J]. Free Radic Biol Med, 2017, 107:125-135. [18] 赵忆宁,何颖,沈先荣,等.西咪替丁对低剂量电离辐射致大鼠氧化应激的保护作用[J].解放军医学杂志,2017,42(2):128-133. [19] CECCALDI R, RONDINELLI B, D'ANDREA A D. Repair pathway choices and consequences at the double-strand break[J]. Trends Cell Biol, 2016, 26(1):52-64. |