[1] HE Y H, THUMMURI D, ZHENG G R, et al. Cellular senescence and radiation-induced pulmonary fibrosis[J].Transl Res, 2019, 209:14-21. [2] QU H J, LIU L, LIU Z, et al. Blocking TBK1 alleviated radiation-induced pulmonary fibrosis and epithelial-mesenchymal transition through Akt-Erk inactivation[J].Exp Mol Med, 2019,51(4):42. [3] LIU Z, LIANG X, LI X P, et al. MiRNA-21 functions in ionizing radiation-induced epithelium-to-mesenchymal transition (EMT) by downregulating PTEN[J]. Toxicol Res (Camb), 2019, 8(3):328-340. [4] HOSSEINZADEH A, JAVAD-MOOSAVI S A, REITER R J, et al. Idiopathic pulmonary fibrosis (IPF) signaling pathways and protective roles of melatonin[J].Life Sci,2018,201:17-29. [5] 李婧,李戎,丁维俊. Wnt/β-catenin信号通路与肺纤维化的调控机制[J]. 医疗装备, 2016, 29(20):200-202. [6] PENG X Y, MOORE M W, PENG H, et al. CD4+CD25+FoxP3+ Regulatory Tregs inhibit fibrocyte recruitment and fibrosis via suppression of FGF-9 production in the TGF-β1 exposed murine lung[J]. Front Pharmacol, 2014, 5:80. [7] VALDEMBRI D, REGANO D, MAIONE F, et al. Class 3 semaphorins in cardiovascular development[J]. Cell Adh Migr, 2016, 10(6):641-651. [8] ROY S, BAG A K, SINGH R K, et al. Multifaceted role of neuropilins in the immune system:potential targets for immunotherapy[J].Front Immunol, 2017,8:1228. [9] 孙文婕,杨光路. VEGF与神经元生长相关性的研究进展[J]. 菏泽医学专科学校学报, 2017, 29(1):73-77. [10] KAZEMI M, CARRER A, MOIMAS S, et al. VEGF121 and VEGF165 differentially promote vessel maturation and tumor growth in mice and humans[J].Cancer Gene Ther, 2016,23(5):125-132. [11] NILAND S, EBLE J A. Neuropilins in the context of tumor vasculature[J]. Int J Mol Sci, 2019, 20(3):E639. [12] 陈志远,董卓,魏威,等. TGF-β1对放射性肺纤维化作用的研究进展[J]. 辐射防护, 2018, 38(2):171-175. [13] GABASA M, DUCH P, JORBA I, et al. Epithelial contribution to the profibrotic stiff microenvironment and myofibroblast population in lung fibrosis[J].Mol Biol Cell, 2017, 28(26):3741-3755. [14] BERNAU K, TORR E E, EVANS M D, et al. Tensin 1 is essential for myofibroblast differentiation and extracellular matrix formation[J]. Am J Respir Cell Mol Biol, 2017, 56(4):465-476. [15] 郑啓盛, 刘培勋. 放射性肺纤维化的分子机制及其防治药物综述[J]. 辐射研究与辐射工艺学报, 2016, 34(1):3-12. [16] EL-SAHLI S, XIE Y, WANG L S, et al. Wnt signaling in cancer metabolism and immunity[J].Cancers (Basel), 2019,11(7):904. [17] 董环,张晓梅,孟丽红,等. 肺纤方对博来霉素诱导肺纤维化大鼠wnt3a、β-catenin、WIF1和LRP表达的影响[J]. 中国中医药信息杂志, 2019, 26(9):60-64. [18] 祝艳,张春阳,冯华松,等. Wnt/β-catenin信号通路关键因子在放射性肺纤维化中的作用[J]. 现代生物医学进展, 2015, 15(27):5248-5251. [19] CHANDA D, OTOUPALOVA E, SMITH S R, et al. Developmental pathways in the pathogenesis of lung fibrosis[J].Mol Aspects Med, 2019,65:56-69. [20] DONG J C, CHENG G H, SHAN Y X, et al. Role of PLC-PIP2 and cAMP-PKA signal pathways in radiation-induced immune-suppressing effect[J].Biomed Environ Sci, 2014,27(1):27-34. [21] CHEN Z J, WU Z Q, NING W. Advances in molecular mechanisms and treatment of radiation-induced pulmonary fibrosis[J]. Transl Oncol, 2019, 12(1):162-169. [22] HILL C, JONES M G, DAVIES D E, et al. Epithelial-mesenchymal transition contributes to pulmonary fibrosis via aberrant epithelial/fibroblastic cross-talk[J]. J Lung Health Dis, 2019, 3(2):31-35. [23] ROMERO F, SUMMER R. Protein folding and the challenges of maintaining endoplasmic reticulum proteostasis in idiopathic pulmonary fibrosis[J].Ann Am Thorac Soc, 2017,14(Suppl 5):S410-S413. [24] JOLLY M K, WARD C, EAPEN M S, et al. Epithelial-mesenchymal transition, a spectrum of states:Role in lung development, homeostasis, and disease[J]. Dev Dyn, 2018, 247(3):346-358. [25] SALTON F, VOLPE M C, CONFALONIERI M. Epithelia-mesenchymal transition in the pathogenesis of idiopathic pulmonary fibrosis[J]. Medicina (Kaunas), 2019, 55(4):E83. [26] 宋永安,刘海洋,张晓菊.阿帕替尼对肺腺癌H1650细胞增殖、活性氧水平和凋亡的影响[J].郑州大学学报(医学版),2019,54(2):223-226. [27] 吴昊,林庆,徐全,等.ECT2-siRNA转染对肺腺癌A549细胞周期分布和凋亡的影响[J].郑州大学学报(医学版),2019,54(3):406-409. |