[1] BAPTISTE D C, FEHLINGS M G. Update on the treatment of spinal cord injury[J]. Prog Brain Res, 2007, 161:217-233. [2] COVACU R, BRUNDIN L. Effects of neuroinflammation on neural stem cells[J]. Neuroscientist, 2017, 23(1):27-39. [3] LI XR, FAN C X, XIAO Z F, et al. A collagen microchannel scaffold carrying paclitaxel-liposomes induces neuronal differentiation of neural stem cells through Wnt/β-catenin signaling for spinal cord injury repair[J]. Biomaterials, 2018, 183:114-127. [4] SENGOTTUVEL V, LEIBINGER M, PFREIMER M, et al. Taxol facilitates axon regeneration in the mature CNS[J]. J Neurosci, 2011, 31(7):2688-2699. [5] XIE J W, WANG C H. Electrospun micro- and nanofibers for sustained delivery of paclitaxel to treat C6 glioma in vitro [J]. Pharm Res, 2006, 23(8):1817-1826. [6] BIENEK D R, HOFFMAN K M, TUTAK W. Blow-spun chitosan/PEG/PLGA nanofibers as a novel tissue engineering scaffold with antibacterial properties[J]. J Mater Sci Mater Med, 2016, 27(9):146. [7] LIU C, HUANG Y, PANG M, et al. Tissue-engineered regeneration of completely transected spinal cord using induced neural stem cells and gelatin-electrospun poly (lactide-co-glycolide)/polyethylene glycol scaffolds[J]. PLoS One, 2015, 10(3):e0117709. [8] WALI A, ZHANG Y C, SENGUPTA P, et al. Electrospinning of non-ionic cellulose ethers/polyvinyl alcohol nanofibers:Characterization and applications[J]. Carbohydr Polym, 2018, 181:175-182. [9] 杨光. 共载纳米银及bFGF的PLGA/PCL壳核结构微球制备及促进创面修复的实验研究[D].长春:吉林大学,2018. [10] XIA P,WANG S,QI Z P, et al. BMP-2-releasing gelatin microspheres/PLGA scaffolds for bone repairment of X-ray-radiated rabbit radius defects[J]. Artif Cell Nanomed Biotechnol, 2019,47(1):1662-1673. [11] PAN S,QI Z P,LI QJ, et al. Graphene oxide-PLGA hybrid nanofibres for the local delivery of IGF-1 and BDNF in spinal cord repair[J]. Artif Cells Nanomed Biotechnol, 2019,47(1):651-664. [12] ZHAO W, LI J J, JIN K X, et al. Fabrication of functional PLGA-based electrospun scaffolds and their applications in biomedical engineering[J]. Mater Sci Eng C Mater Biol Appl, 2016, 59:1181-1194. [13] MOTHE A J, TATOR C H. Review of transplantation of neural stem/progenitor cells for spinal cord injury[J]. Int J Dev Neurosci, 2013, 31(7):701-713. [14] LIU S,XIE Y Y,WANG B, et al. Role and prospects of regenerative biomaterials in the repair of spinal cord injury[J]. Neural Regen Res, 2019,14(8):1352-1363. [15] FAN BY,WEI ZJ,YAO X, et al. Microenvironment imbalance of spinal cord injury[J]. Cell Transplant,2018,27(6):853-866. [16] WANG B, XIAO Z F, CHEN B, et al. Nogo-66 promotes the differentiation of neural progenitors into astroglial lineage cells through mTOR-STAT3 pathway[J]. PLoS One, 2008, 3(3):e1856. [17] XUE J J, XIE J W, LIU W Y, et al. Electrospun nanofibers:new concepts, materials, and applications[J]. Acc Chem Res, 2017, 50(8):1976-1987. [18] ZHANG B, CARROLL J, TROJANOWSKI J Q,et al. The microtubule-stabilizing agent, epothilone D, reduces axonal dysfunction, neurotoxicity, cognitive deficits, and Alzheimer-like pathology in an interventional study with aged tau transgenic mice[J]. J Neurosci, 2012, 32(11):3601-3611. [19] SABELSTROM H, STENUDD M, FRISEN J. Neural stem cells in the adult spinal cord[J]. Exp Neurol, 2014, 260:44-49. [20] WANG J J, WANG J Q, LU P, et al. Local delivery of FTY720 in PCL membrane improves SCI functional recovery by reducing reactive astrogliosis[J]. Biomaterials, 2015, 62:76-87. [21] LU P, KADOYA K, TUSZYNSKI M H. Axonal growth and connectivity from neural stem cell grafts in models of spinal cord injury[J]. Curr Opin Neurobiol, 2014, 27:103-109. |