1 |
MEINERS S, HILGENDORFF A. Early injury of the neonatal lung contributes to premature lung aging: a hypothesis[J]. Mol Cell Pediatr, 2016, 3(1): 24.
|
2 |
VIRKUD Y V, HORNIK C P, BENJAMIN D K,et al. Respiratory support for very low birth weight infants receiving dexamethasone[J].J Pediatr,2017,183:26-30.e3.
|
3 |
MORA CARPIO A L, MORA J I. Ventilator management [M]. Treasure Island: StatPearls Publishing LLC, 2022.
|
4 |
WHEATER M, RENNIE J M. Poor prognosis after prolonged ventilation for bronchopulmonary dysplasia[J]. Arch Dis Child Fetal Neonatal Ed, 1994, 71(3): F210-F211.
|
5 |
JOBE A H, IKEGAMI M. Mechanisms initiating lung injury in the preterm[J]. Early Hum Dev, 1998, 53(1): 81-94.
|
6 |
CHEN J, SMITH L E. Retinopathy of prematurity[J]. Angiogenesis, 2007, 10(2): 133-140.
|
7 |
SHUKLA V V, AMBALAVANAN N. Recent advances in bronchopulmonary dysplasia[J]. I J Pediatr, 2021, 88(7): 690-695.
|
8 |
SU L, ZHANG R, ZHANG Q, et al. The effect of mechanical ventilation on peripheral perfusion index and its association with the prognosis of critically ill patients[J]. Crit Care Med, 2019, 47(5): 685-690.
|
9 |
GULLBERG N, WINBERG P, SELLDEN H. Changes in mean airway pressure during HFOV influences cardiac output in neonates and infants[J]. Acta Ana Sca, 2004, 48(2): 218-223.
|
10 |
GOMEZ-POMAR E, MAKHOUL M, WESTGATE P M, et al. Relationship between perfusion index and patent ductus arteriosus in preterm infants[J]. Pediatr Res, 2017, 81(5): 775-779.
|
11 |
OSMAN A A, ALBALAWI M, DAKSHINAMURTI S,et al. The perfusion index histograms predict patent ductus arteriosus requiring treatment in preterm infants[J]. Eur J Pediatr, 2021, 180(6): 1747-1754.
|
12 |
KELLNER M, NOONEPALLE S, LU Q, et al. ROS signaling in the pathogenesis of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS)[J]. Advan Exper Med Bio, 2017, 967: 105-137.
|
13 |
MARSEGLIA L, ANGELO GD, GRANESE R, et al. Role of oxidative stress in neonatal respiratory distress syndrome[J]. Free Rad Bio Med, 2019, 142: 132-137.
|
14 |
TORRES-CUEVAS I, PARRA-LLORCA A, SANCHEZ-ILLANA A, et al. Oxygen and oxidative stress in the perinatal period[J]. Redox Bio, 2017, 12: 674-681.
|
15 |
NEGI R, PANDE D, KARKI K, et al. A novel approach to study oxidative stress in neonatal respiratory distress syndrome[J]. BBA Clin, 2015, 3: 65-69.
|
16 |
DIZDAR E A, URAS N, OGUZ S, et al. Total antioxidant capacity and total oxidant status after surfactant treatment in preterm infants with respiratory distress syndrome[J]. Ann Clin Bioch, 2011, 48(Pt 5): 462-467.
|
17 |
CHIMENZ R, CANNAVO L, GASBARRO A, et al. PPHN and oxidative stress:a review of literature[J]. J Bio Reg Homeo Ag, 2020,34(4 ): 79-83.
|
18 |
VIEILLARD-BARON A, GIROU E, VALENTE E, et al. Predictors of mortality in acute respiratory distress syndrome. Focus On the role of right heart catheterization[J]. Am J Respir Crit Care Med, 2000, 161(5): 1597-1601.
|
19 |
YU M S, IN K S, SOOK K Y. Risk factors associated with prolonged mechanical ventilation after surgical patent ductus arteriosus ligation in preterm infants[J]. J Mat Fetal Neonatal Med, 2022, 35(19): 3714-3721.
|
20 |
VIEILLARD-BARON A, MATTHAY M, TEBOUL J L, et al. Experts’ opinion on management of hemodynamics in ARDS patients: focus on the effects of mechanical ventilation[J]. Intensive Care Med, 2016, 42(5): 739-749.
|
21 |
KWON Y, DEBATY G, PUERTAS L, et al. Effect of regulating airway pressure on intrathoracic pressure and vital organ perfusion pressure during cardiopulmonary resuscitation: a non-randomized interventional cross-over study[J]. Scand J Trauma Resusc Emerg Med, 2015, 23: 83.
|
22 |
GULLBERG N, WINBERG P, SELLDEN H. Changes in stroke volume cause change in cardiac output in neonates and infants when mean airway pressure is altered[J]. Acta Anaesthesiol Scand, 1999, 43(10): 999-1004.
|
23 |
MAAYAN C, EYAL F, MANDELBERG A, et al. Effect of mechanical ventilation and volume loading on left ventricular performance in premature infants with respiratory distress syndrome[J]. Crit Care Med, 1986, 14(10): 858-860.
|
24 |
TAPAR H, KARAMAN S, DOGRU S, et al. The effect of patient positions on perfusion index[J]. BMC Anesthesiol, 2018, 18(1): 111.
|
25 |
JANAILLAC M, BEAUSOLEIL T P, BARRINGTON K J, et al. Correlations between near-infrared spectroscopy, perfusion index, and cardiac outputs in extremely preterm infants in the first 72 h of life[J]. Eur J Pediatr, 2018, 177(4): 541-550.
|
26 |
SEHGAL A, RUOSS J L, STANFORD A H, et al. Hemodynamic consequences of respiratory interventions in preterm infants[J]. J Perinatol, 2022, 42(9): 1153-1160.
|
27 |
NESTAAS E, SCHUBERT U, DE BOODE W P,et al.Tissue Doppler velocity imaging and event timings in neonates: a guide to image acquisition, measurement, interpretation, and reference values[J]. Pediatr Res, 2018, 84(): 18-29.
|
28 |
ALIAN A A, SHELLEY K H. Photoplethysmography[J]. Best Pract Res Clin Anaesthesiol,2014,28(4): 395-406.
|
29 |
REISNER A, SHALTIS P A, MCCOMBIE D, et al. Utility of the photoplethysmogram in circulatory monitoring[J]. Anesthesiology, 2008,108(5): 950-958.
|
30 |
ELGENDI M. Optimal signal quality index for photoplethysmogram signals[J]. Bioengineering, 2016, 3(4). DOI:10.3390/bioengineering3040021 .
doi: 10.3390/bioengineering3040021
|
31 |
LIMA A P, BEELEN P and BAKKER J. Use of a peripheral perfusion index derived from the pulse oximetry signal as a noninvasive indicator of perfusion[J]. Crit Care Med, 2002, 30(6): 1210-1213.
|
32 |
CORSINI I, CECCHI A, COVIELLO C, et al. Perfusion index and left ventricular output correlation in healthy term infants[J]. Eur J Pediatr, 2017, 176(8): 1013-1018.
|
33 |
TAKAHASHI S, KAKIUCHI S, NANBA Y, et al. The perfusion index derived from a pulse oximeter for predicting low superior vena cava flow in very low birth weight infants[J]. J Perinatol, 2010, 30(4): 265-269.
|
34 |
SU J P, MI H B, MUN H J, et al. Risk factors and clinical outcomes of extubation failure in very early preterm infants: a single-center cohort study[J]. BMC Pediatr, 2023, 23(1): 36.
|
35 |
BHATTACHARJEE I, DAS A, COLLIN M, et al. Predicting outcomes of mechanically ventilated premature infants using respiratory severity score[J]. J Matern Fetal Neonatal Med, 2022,35(23):4620-4627.
|
36 |
SHAH S I, ABOUDI D, LA GAMMA E F, et al. Respiratory severity score greater than or equal to 2 at birth is associated with an increased risk of mortality in infants with birth weights less than or equal to 1250 g[J]. Pediatr Pulmonol, 2020, 55(12): 3304-3311.
|
37 |
SEO Y M, YUM S K, SUNG I K. Respiratory severity score with regard to birthweight during the early days of life for predicting pulmonary hypertension in preterm infants[J]. J Trop Pediatr, 2020, 66(6): 561-568.
|
38 |
MERCIER JC, HUMMLER H, DURRMEYER X,et al.Inhaled nitric oxide for prevention of bronchopulmonary dysplasia in premature babies (EUNO): a randomised controlled trial[J]. Lancet, 2010, 376(9738): 346-354.
|
39 |
ZUPANCIC J A, HIBBS A M, PALERMO L, et al. Economic evaluation of inhaled nitric oxide in preterm infants undergoing mechanical ventilation[J]. Pediatr, 2009, 124(5): 1325-1332.
|
40 |
IYER N P and MHANNA M J. Non-invasively derived respiratory severity score and oxygenation index in ventilated newborn infants[J]. Pediatr pulmonol, 2013, 48(4): 364-369.
|