| 1 |
MEHDIPOUR CHARI K, ENDERAMI S E, MANSOUR R N, et al. Applications of blood plasma derivatives for cutaneous wound healing: a mini-review of clinical studies[J]. Regen Ther, 2024, 27: 251-258.
|
| 2 |
DU P, CHEN X, CHEN Y, et al. In vivo and in vitro studies of a propolis-enriched silk fibroin-gelatin composite nanofiber wound dressing[J]. Heliyon, 2023, 9(3): e13506.
|
| 3 |
NDLOVU S P, NGECE K, ALVEN S, et al. Gelatin-based hybrid scaffolds: promising wound dressings[J]. Polymers, 2021, 13(17): 2959.
|
| 4 |
ZHU C X, CAO R F, ZHANG Y, et al. Metallic ions encapsulated in electrospun nanofiber for antibacterial and angiogenesis function to promote wound repair[J]. Front Cell Dev Biol, 2021, 9: 660571.
|
| 5 |
WANG X D, WANG Y H, TENG Y J, et al. 3D bioprinting: opportunities for wound dressing development[J]. Biomed Mater, 2023, 18(5).DOI: 10.1088/1748-605X/ace228 .
doi: 10.1088/1748-605X/ace228
|
| 6 |
REZVANI GHOMI E, NIAZI M, RAMAKRISHNA S. The evolution of wound dressings: from traditional to smart dressings[J]. Polym Adv Technol, 2023, 34(2): 520-530.
|
| 7 |
XIE X R, CHEN Y J, WANG X Y, et al. Electrospinning nanofiber scaffolds for soft and hard tissue regeneration[J]. J Mater Sci Technol, 2020, 59: 243-261.
|
| 8 |
SHARDA G, PALLAB D, VEENA A, et al. Accelerating skin barrier repair using novel bioactive magnesium-doped nanofibers of non-mulberry silk fibroin during wound healing[J]. J Bioact Compatible Polym, 2022, 37(1): 38-52.
|
| 9 |
UKE N, SINGH S, SORENSEN G E, et al. The ideal donor site dressing: a comparison of a chitosan-based gelling dressing to traditional dressings[J]. J Burn Care Res, 2022, 43(3): 652-656.
|
| 10 |
AMBEKAR R S, KANDASUBRAMANIAN B. Advancements in nanofibers for wound dressing: a review[J]. Eur Polym J, 2019, 117: 304-336.
|
| 11 |
BAL-ÖZTÜRK A, ÖZKAHRAMAN B, ÖZBAŞ Z, et al. Advancements and future directions in the antibacterial wound dressings - A review[J]. J Biomed Mater Res B Appl Biomater, 2021, 109(5): 703-716.
|
| 12 |
GU J Y, GUI Y S, CHEN L R, et al. Use of natural products as chemical library for drug discovery and network pharmacology[J]. PLoS One, 2013, 8(4): e62839.
|
| 13 |
BOBIŞ O. Plants: sources of diversity in propolis properties[J]. Plants (Basel), 2022, 11(17): 2298.
|
| 14 |
ANJUM S I, ULLAH A, KHAN K A, et al. Composition and functional properties of propolis (bee glue): a review[J]. Saudi J Biol Sci, 2019, 26(7): 1695-1703.
|
| 15 |
KRÓL W, BANKOVA V, SFORCIN J M, et al. Propolis: properties, application, and its potential[J]. Evid Based Complement Alternat Med, 2013, 2013: 807578.
|
| 16 |
KOWACZ M, POLLACK G H. Propolis-induced exclusion of colloids: possible new mechanism of biological action[J]. Colloid Interface Sci Commun, 2020, 38: 100307.
|
| 17 |
ESKANDARINIA A, KEFAYAT A, GHARAKHLOO M, et al. A propolis enriched polyurethane-hyaluronic acid nanofibrous wound dressing with remarkable antibacterial and wound healing activities[J]. Int J Biol Macromol, 2020, 149: 467-476.
|
| 18 |
JABERIFARD F, ALMAJIDI Y Q, ARSALANI N, et al. A self-healing crosslinked-xanthan gum/soy protein based film containing halloysite nanotube and propolis with antibacterial and antioxidant activity for wound healing[J]. Int J Pharm, 2024, 656: 124073.
|
| 19 |
DOODMANI S M, BAGHERI A, NATOURI O, et al. Electrospinning-netting of spider-inspired polycaprolactone/collagen nanofiber-nets incorporated with Propolis extract for enhanced wound healing applications[J]. Int J Biol Macromol, 2024, 267(Pt 1): 131452.
|
| 20 |
STOJKO M, WŁODARCZYK J, SOBOTA M, et al. Biodegradable electrospun nonwovens releasing propolis as a promising dressing material for burn wound treatment[J]. Pharmaceutics, 2020, 12(9): 883.
|
| 21 |
QIAO Y C, DUAN L J. Curcumin-loaded polyvinyl butyral film with antibacterial activity[J]. e-Polymers, 2020, 20(1): 673-681.
|
| 22 |
CHUI C Y, MOUTHUY P A, YE H. Direct electrospinning of poly(vinyl butyral) onto human dermal fibroblasts using a portable device[J]. Biotechnol Lett, 2018, 40(4): 737-744.
|
| 23 |
LIU G S, YAN X, YAN F F, et al. In situ electrospinning iodine-based fibrous meshes for antibacterial wound dressing[J]. Nanoscale Res Lett, 2018, 13(1): 309.
|
| 24 |
FERNÁNDEZ-GUARINO M, HERNÁNDEZ-BULE M L, BACCI S. Cellular and molecular processes in wound healing[J]. Biomedicines, 2023, 11(9): 2526.
|
| 25 |
MORENO FLOREZ A I, MALAGON S, OCAMPO S, et al. Antibacterial and osteoinductive properties of wollastonite scaffolds impregnated with propolis produced by additive manufacturing[J]. Heliyon, 2024, 10(1): e23955.
|