[1] SINGH V V, JURADO-SANCHEZ B, SATTAYASAMITSATHIT S, et al. Multifunctional silver-exchanged zeolite micromotors for catalytic detoxification of chemical and biological threats[J]. Adv Funct Mater, 2015, 25(14):2147-2155. [2] YAMAMOTO M, SHITOMI K, MIYATA S, et al. Bovine serum albumin-capped gold nanoclusters conjugating with methylene blue for efficient 1O2 generation via energy transfer[J]. J Colloid Interface Sci, 2018, 510:221-227. [3] KHAN S,MOHAMMED RAYIS P, RIZVI A, et al. ROS mediated antibacterial activity of photoilluminated riboflavin:A photodynamic mechanism against nosocomial infections[J].Toxicol Rep, 2019, 6:136-142. [4] FUMES A C,ROMUALDO P C,MONTEIRO R M, et al. Influence of pre-irradiation time employed in antimicrobial photodynamic therapy with diode laser[J]. Lasers Med Sci, 2018, 33(1):67-73. [5] JALEEL J A, PRAMOD K. Artful and multifaceted applications of carbon dot in biomedicine[J]. J Control Release, 2018, 269:302-321. [6] LIM S Y, SHEN W, GAO Z. Carbon quantum dots and their applications[J]. Chem Soc Rev, 2015, 44(1):362-381. [7] MIAO P, HAN K, TANG Y G, et al. Recent advances in carbon nanodots:synthesis, properties and biomedical applications[J]. Nanoscale, 2015, 7(5):1586-1595. [8] MIAO X, YAN X, QU D, et al. Red emissive sulfur, nitrogen codoped carbon dots and their application in ion detection and theraonostics[J]. Acs Appl Mater Inter, 2017, 9(22):18549-18556. [9] FERNANDO K A, SAHU S, LIU Y M, et al. Carbon quantum dots and applications in photocatalytic energy conversion[J]. ACS Appl Mater Interfaces, 2015, 7(16):8363-8376. [10] MAISCH T. Resistance in antimicrobial photodynamic inactivation of bacteria[J]. Photochem Photobiol Sci, 2015, 14(8):1518-1526. [11] LIU J J, LU S Y, TANG Q L, et al. One-step hydrothermal synthesis of photoluminescent carbon nanodots with selective antibacterial activity against Porphyromonas gingivalis[J]. Nanoscale, 2017, 9(21):7135-7142. [12] KUMARI S, RAJIT PRASAD S, MANDAL D, et al. Carbon dot-DNA-protoporphyrin hybrid hydrogel for sustained photoinduced antimicrobial activity[J]. J Colloid Interface Sci, 2019, 553:228-238. [13] KOVÁCOVÁ M, MARKOVIC ZM, HUMPOLICEK P,et al. Carbon quantum dots modified polyurethane nanocomposite as effective photocatalytic and antibacterial agents[J]. Acs Biomater, 2018, 4(12):3983-3993. [14] HØIBY N. A short history of microbial biofilms and biofilm infections[J]. APMIS,2017, 125(4):272-275. [15] HU X Q, HUANG YY, WANG Y G, et al. Antimicrobial photodynamic therapy to control clinically relevant biofilm infections[J]. Front Microbiol, 2018, 9:1299. [16] DÖRTBUDAK O, HAAS R, BERNHART T, et al. Lethal photosensitization for decontamination of implant surfaces in the treatment of peri-implantitis[J]. Clin Oral Implants Res, 2001, 12(2):104-108. [17] HARRIS F, PIERPOINT L. Photodynamic therapy based on 5-aminolevulinic acid and its use as an antimicrobial agent[J]. Med Res Rev, 2012, 32(6):1292-1327. [18] TSAI T, CHIEN H F, WANG T H, et al. Chitosan augments photodynamic inactivation of gram-positive and gram-negative bacteria[J]. Antimicrob Agents Chemother, 2011, 55(5):1883-1890. [19] HAKIMIHA N,KHOEI F,BAHADOR A,et al.The susceptibility of streptococcus mutans to antibacterial photodynamic therapy:A comparison of two different photosensitizers and light sources[J]. J Appl Oral Sci, 2014, 22(2):80-84. [20] LIOU J W, CHANG H H. Bactericidal effects and mechanisms of visible light-responsive titanium dioxide photocatalysts on pathogenic bacteria[J]. Arch Immunol Ther Exp(Warsz), 2012, 60(4):267-275. [21] JOVANOVIC S P, SYRGIANNIS Z, MARKOVIC Z M, et al. Modification of structural and luminescence properties of graphene quantum dots by gamma irradiation and their application in a photodynamic therapy[J]. ACS Appl Mater Interaces, 2015, 7(46):25865- 25874. |