[1] ZHU S J, MENG Q N, WANG L, et al. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging[J]. Angew Chem Int Ed Engl, 2013, 52(14):3953-3957. [2] LIU C J, ZHANG P, ZHAI X Y, et al. Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence[J]. Biomaterials, 2012, 33(13):3604-3613. [3] SASAKI K, YOSHIDA H. Organelle autoregulation--stress responses in the ER, Golgi, mitochondria and lysosome[J]. J Biochem, 2015, 157(4):185-195. [4] JAYARAM D T, RUNA S, KEMP M L, et al. Nanoparticle-induced oxidation of corona proteins initiates an oxidative stress response in cells[J]. Nanoscale, 2017,9(22):7595-7601. [5] CHEN R, HUO L L,SHI X F,et al. Endoplasmic reticulum stress induced by zinc oxide nanoparticles is an earlier biomarker for nanotoxicological evaluation[J]. ACS Nano, 2014, 8(3):2562-2574. [6] PERSAUD I, SHANNAHAN J H, RAGHAVENDRA A J, et al. Biocorona formation contributes to silver nanoparticle induced endoplasmic reticulum stress[J]. Ecotoxicol Environ Saf, 2019, 170: 77-86. [7] GUO C X, MA R, LIU X Y, et al. Silica nanoparticles induced endothelial apoptosis via endoplasmic reticulum stress-mitochondrial apoptotic signaling pathway[J]. Chemosphere, 2018, 210: 183-192. [8] HUO L L, CHEN R, ZHAO L, et al. Silver nanoparticles activate endoplasmic reticulum stress signaling pathway in cell and mouse models: The role in toxicity evaluation[J]. Biomaterials, 2015, 61:307-315. [9] HE Q, ZHOU X J, LIU Y, et al. Titanium dioxide nanoparticles induce mouse hippocampal neuron apoptosis via oxidative stress- and calcium imbalance-mediated endoplasmic reticulum stress[J]. Environ Toxicol Pharmacol, 2018, 63: 6-15. [10] KACHI H, NODA M, WATAHA J C, et al. Colloidal platinum nanoparticles increase mitochondrial stress induced by resin composite components[J]. J Biomed Mater Res B Appl Biomater, 2011, 96(2):193-198. [11] DIPPOLD H C, NG M M, FARBER-KATZ S E, et al. GOLPH3 bridges phosphatidylinositol-4-phosphate and actomyosin to stretch and shape the golgi to promote budding[J]. Cell, 2009, 139(2):337-351. [12] SECHI S, FRAPPAOLO A, BELLONI G, et al. The multiple cellular functions of the oncoprotein Golgi phosphoprotein 3[J]. Oncotarget, 2015, 6(6):3493-3506. [13] LI T, YOU H, ZHANG J, et al. Study of GOLPH3: a potential stress-inducible protein from golgi apparatus[J]. Mol Neurobiol, 2014, 49(3):1449-1459. [14] CAO Y, LONG J M, LIU L L, et al. A review of endoplasmic reticulum (ER) stress and nanoparticle (NP) exposure[J]. Life Sci, 2017, 186:33-42. [15] LERNER C A, RUTAGARAMA P, AHMAD T, et al. Electronic cigarette aerosols and copper nanoparticles induce mitochondrial stress and promote DNA fragmentation in lung fibroblasts[J]. Biochem Biophys Res Commun, 2016,477(4):620-625. [16] CHAKRABORTY A, JANA N R. Vitamin C-conjugated nanoparticle protects cells from oxidative stress at low doses but induces oxidative stress and cell death at high doses[J]. ACS Appl Mater Interfaces, 2017, 9(48):41807-41817. [17] KOYUNCU I, GONEL A, KOCYIGIT A, et al. Selective inhibition of carbonic anhydrase-Ⅸ by sulphonamide derivatives induces pH and reactive oxygen species-mediated apoptosis in cervical cancer HeLa cells[J]. J Enzyme Inhib Med Chem, 2018, 33(1): 1137-1149. [18] BERGERON J J M, AU C E, THOMAS D Y, et al. Proteomics identifies golgi phosphoprotein 3(GOLPH3) with a link between golgi structure, cancer, dna damage and protection from cell death[J]. Mol Cell Proteomics, 2017, 16(12):2048-2054. [19] FARBER-KATZ S E, DIPPOLD H C, BUSCHMAN M D, et al. DNA damage triggers Golgi dispersal via DNA-PK and GOLPH3[J]. Cell, 2014, 156(3):413-427. [20] BUSCHMAN M D, XING M K, FIELD S J. The GOLPH3 pathway regulates Golgi shape and function and is activated by DNA damage [J]. Front Neurosci, 2015, 9:362. [21] KUNA R S, FIELD S J. GOLPH3: a Golgi phosphatidylinositol(4)phosphate effector that directs vesicle trafficking and drives cancer[J]. J Lipid Res, 2019, 60(2): 269-275. |