[1] SHIMIZU S, SHINOHARA Y, TSUJIMOTO Y. Bax and Bcl-xL independently regulate apoptotic changes of yeast mitochondria that require VDAC but not adenine nucleotide translocator[J]. Oncogene, 2000, 19(38):4309-4318. [2] CHOWDHURY S R, SENGUPTA S, BISWAS S, et al. Low fucose containing bacterial polysaccharide facilitate mitochondria-dependent ROS-induced apoptosis of human lung epithelial carcinoma via controlled regulation of MAPKs-mediated Nrf2/Keap1 homeostasis signaling[J]. Mol Carcinog, 2015, 54(12):1636-1655. [3] COSTANTINI P, JACOTOT E, DECAUDIN D, et al. Mitochondrion as a novel target of anticancer chemotherapy[J]. J Natl Cancer Inst, 2000, 92(13):1042-1053. [4] 李鑫, 马云飞, 唐庚, 等. 线粒体靶向KillerRed诱导的ROS增强辐射对HeLa细胞的增殖抑制作用[J]. 吉林大学学报(医学版), 2018, 44(4):718-723. [5] LI X, FANG F, GAO Y, et al. ROS induced by KillerRed targeting mitochondria (mtKR) enhances apoptosis caused by radiation via cyt c/caspase-3 pathway[J]. Oxid Med Cell Longev, 2019, 2019:4528616. [6] ALLEN J, ROMAY-TALLON R, BRYMER K J, et al. Mitochondria and mood:mitochondrial dysfunction as a key player in the manifestation of depression[J]. Front Neurosci, 2018, 12:386. [7] WANG W J, LI Y, ZHU J, et al. Prognostic values of systemic inflammation response (SIR) parameters in resectable cervical cancer[J]. Dose Response, 2019, 17(1):1559325819829543. [8] XIE X X, CHEN Y Y, MA L Y, et al. Major depressive disorder mediates accelerated aging in rats subjected to chronic mild stress[J]. Behav Brain Res, 2017, 329:96-103. [9] ZOROV D B, FILBURN C R, KLOTZ L O, et al. Reactive oxygen species (ROS)-induced ROS release:a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes[J]. J Exp Med, 2000, 192(7):1001-1014. [10] ZHANG C, ZHAO K L, BU W B, et al. Marriage of scintillator and semiconductor for synchronous radiotherapy and deep photodynamic therapy with diminished oxygen dependence[J]. Angew Chem Int Ed Engl, 2015, 54(6):1770-1774. [11] DEWAELE M, MAES H, AGOSTINIS P. ROS-mediated mechanisms of autophagy stimulation and their relevance in cancer therapy[J]. Autophagy, 2010, 6(7):838-854. [12] BELLOT G L, LIU D, PERVAIZ S. ROS, autophagy, mitochondria and cancer:Ras, the hidden master?[J]. Mitochondrion, 2013, 13(3):155-162. [13] BOL V, BOL A, BOUZIN C, et al. Reprogramming of tumor metabolism by targeting mitochondria improves tumor response to irradiation[J]. Acta Oncol, 2015, 54(2):266-274. [14] JÄRÅS M, EBERT B L. Power cut:inhibiting mitochondrial translation to target leukemia[J]. Cancer Cell, 2011, 20(5):555-556. [15] SHIRAKABE A, ZHAI P Y, IKEDA Y, et al. Drp1-dependent mitochondrial autophagy plays a protective role against pressure overload-induced mitochondrial dysfunction and heart failure[J]. Circulation, 2016, 133(13):1249-1263. [16] SAJADIMAJD S, KHAZAEI M. Oxidative stress and cancer:The role of Nrf2[J]. Curr Cancer Drug Targets, 2018, 18(6):538-557. [17] SCHERZ-SHOUVAL R, ELAZAR Z. Regulation of autophagy by ROS:physiology and pathology[J]. Trends Biochem Sci, 2011, 36(1):30-38. [18] ZANDALINAS S I, MITTLER R. ROS-induced ROS release in plant and animal cells[J]. Free Radic Biol Med, 2018, 122:21-27. [19] 赵艳,张婷婷.新型肿瘤靶向纳米颗粒联合光动力治疗对人宫颈癌HeLa细胞的体外杀伤作用[J].西安交通大学学报(医学版),2019,40(4):542-548. [20] NARENDRA D, TANAKA A, SUEN D F, et al. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy[J]. J Cell Biol, 2008, 183(5):795-803. |