吉林大学学报(医学版) ›› 2022, Vol. 48 ›› Issue (1): 265-270.doi: 10.13481/j.1671-587X.20220134
• 综述 • 上一篇
收稿日期:
2021-01-27
出版日期:
2022-01-28
发布日期:
2022-01-17
通讯作者:
赵丽艳
E-mail:970201043@qq.com
作者简介:
李 峣(1997-),女,山东省诸城县人,在读硕士研究生,主要从事胶质瘤发病机制方面的研究。
基金资助:
Received:
2021-01-27
Online:
2022-01-28
Published:
2022-01-17
摘要:
血小板源性生长因子D(PDGF-D)是血小板源性生长因子(PDGFs)家族中新近被发现的成员,具有特殊的生物学功能。PDGF-D在包括胶质瘤在内的多种肿瘤组织中呈高表达,并能促进肿瘤细胞上皮-间质转化(EMT)过程。胶质瘤具有侵袭性生长的特性,该特性与EMT有密切关联。Notch1是Notch家族成员之一,参与肿瘤细胞的EMT过程,在PDGF-D促进肿瘤的生长和迁移过程中扮演重要角色。PDGF-D可能通过Notch1信号通路在包括胶质瘤在内的肿瘤细胞EMT过程中发挥效应。现对PDGF-D促进肿瘤细胞EMT、特别是对胶质瘤细胞EMT的调控作用及Notch1信号通路在该过程的可能作用进行简要综述。
中图分类号:
李峣,孙莹,宋燕珂,汪敏,贾茗博,赵丽艳. PDGF-D通过Notch1信号通路对肿瘤细胞上皮-间质转化调控作用的研究进展Research progress in regulatory effect of PDGF-D on epithelial-mesenchymal transition in tumor cells through Notch1 signaling pathway[J]. 吉林大学学报(医学版), 2022, 48(1): 265-270.
1 | 贾茗博, 孙 莹, 赵丽艳. 血小板源生长因子在肿瘤侵袭、转移和上皮间质转化中作用的研究进展[J]. 中国实验诊断学, 2019, 23(6): 1103-1107. |
2 | 颉晚林, 邹 磊, 孙轶华. PDGF-D及其相关信号传导通路在肿瘤发生发展中的作用[J]. 实用癌症杂志, 2019, 34(5): 868-870. |
3 | 钱丁丁, 周建庆. PDGF-C和PDGF-D对心血管系统疾病影响的研究进展[J]. 浙江医学, 2019, 41(22): 2440-2443. |
4 | CHEN J, YUAN W, WU L, et al. PDGF-D promotes cell growth, aggressiveness, angiogenesis and EMT transformation of colorectal cancer by activation of Notch1/Twist1 pathway[J]. Oncotarget, 2017, 8(6): 9961-9973. |
5 | ZHANG H, SUN J D, YAN L J, et al. PDGF-D/PDGFRβ promotes tongue squamous carcinoma cell (TSCC) progression via activating p38/AKT/ERK/EMT signal pathway[J]. Biochem Biophys Res Commun, 2016, 478(2): 845-851. |
6 | DEVARAJAN E, SONG Y H, KRISHNAPPA S,et al. Epithelial-mesenchymal transition in breast cancer lines is mediated through PDGF-D released by tissue-resident stem cells[J]. Int J Cancer, 2012, 131(5): 1023-1031. |
7 | KIM M S, CHOI H S, WU M X, et al. Potential role of PDGFRβ-associated THBS4 in colorectal cancer development[J]. Cancers, 2020, 12(9): 2533. |
8 | WANG Z, LI Y, KONG D, et al. The role of Notch signaling pathway in epithelial-mesenchymal transition (EMT) during development and tumor aggressiveness[J]. Curr Drug Targets, 2010, 11(6): 745-751. |
9 | 杨 允, 戴 德. PDGF-D在肿瘤生长及肿瘤靶向VEGF治疗中的研究现状[J]. 海南医学,2014, 25(20): 3042-3044. |
10 | REIGSTAD L J, VARHAUG J E, LILLEHAUG J R. Structural and functional specificities of PDGF-C and PDGF-D, the novel members of the platelet-derived growth factors family[J]. FEBS J, 2005, 272(22): 5723-5741. |
11 | USTACH C V, KIM H R. Platelet-derived growth factor D is activated by urokinase plasminogen activator in prostate carcinoma cells[J].Mol Cell Biol,2005,25(14): 6279-6288. |
12 | HELDIN C H, ERIKSSON U, OSTMAN A. New members of the platelet-derived growth factor family of mitogens[J].Arch Biochem Biophys, 2002, 398(2): 284-290. |
13 | ROSKOSKI R. The role of small molecule platelet-derived growth factor receptor (PDGFR) inhibitors in the treatment of neoplastic disorders[J]. Pharmacol Res, 2018, 129: 65-83. |
14 | NAJY A J, JUNG Y S, WON J J, et al. Cediranib inhibits both the intraosseous growth of PDGF-D positive prostate cancer cells and the associated bone reaction[J]. Prostate, 2012, 72(12): 1328-1338. |
15 | NORDBY Y, RICHARDSEN E, RAKAEE M, et al. High expression of PDGFR-β in prostate cancer stroma is independently associated with clinical and biochemical prostate cancer recurrence[J]. Sci Rep, 2017, 7: 43378. |
16 | LI H, FREDRIKSSON L, LI X, et al. PDGF-D is a potent transforming and angiogenic growth factor[J]. Oncogene, 2003, 22(10): 1501-1510. |
17 | KESARI S. Understanding glioblastoma tumor biology: the potential to improve current diagnosis and treatments[J]. Semin Oncol, 2011, 38: S2-S10. |
18 | COLELLA B, FAIENZA F, DI BARTOLOMEO S. EMT regulation by autophagy: a new perspective in glioblastoma biology[J]. Cancers(Basel), 2019,11(3):312. |
19 | SHIH A H, HOLLAND E C. Platelet-derived growth factor (PDGF) and glial tumorigenesis[J]. Cancer Lett, 2006, 232(2): 139-147. |
20 | LOKKER N A, SULLIVAN C M, HOLLENBACH S J,et al. Platelet-derived growth factor (PDGF) autocrine signaling regulates survival and mitogenic pathways in glioblastoma cells: evidence that the novel PDGF-C and PDGF-D ligands may play a role in the development of brain tumors[J]. Cancer Res, 2002, 62(13): 3729-3735. |
21 | GONDI C S, VEERAVALLI K K, GORANTLA B, et al. Human umbilical cord blood stem cells show PDGF-D-dependent glioma cell tropism in vitro and in vivo [J]. Neuro Oncol, 2010, 12(5): 453-465. |
22 | THIERY J P, ACLOQUE H, HUANG R Y, et al. Epithelial-mesenchymal transitions in development and disease[J]. Cell, 2009, 139(5): 871-890. |
23 | 侯 鑫. PDGF-D通过EMT参与吉西他滨在肝细胞癌中的耐药机制研究[D]. 蚌埠: 蚌埠医学院, 2014. |
24 | AHMED N, MAINES-BANDIERA S, QUINN M A, et al. Molecular pathways regulating EGF-induced epithelio-mesenchymal transition in human ovarian surface epithelium[J]. Am J Physiol Cell Physiol, 2006, 290(6): C1532-C1542. |
25 | GOTZMANN J, FISCHER A N, ZOJER M, et al. A crucial function of PDGF in TGF-beta-mediated cancer progression of hepatocytes[J]. Oncogene, 2006, 25(22): 3170-3185. |
26 | STRUTZ F, ZEISBERG M, ZIYADEH F N, et al. Role of basic fibroblast growth factor-2 in epithelial-mesenchymal transformation[J]. Kidney Int, 2002, 61(5): 1714-1728. |
27 | YANG L, LIN C, LIU Z R. P68 RNA helicase mediates PDGF-induced epithelial mesenchymal transition by displacing Axin from beta-catenin[J]. Cell, 2006, 127(1): 139-155. |
28 | 王永娟,谢肖立,姜慧卿,等.肝纤维化中上皮间质转化的调控及靶向治疗的研究进展[J]. 临床肝胆病杂志,2021,37(1): 165-168. |
29 | DU C, ZHANG C, HASSAN S, et al. Protein kinase D1 suppresses epithelial-to-mesenchymal transition through phosphorylation of snail[J]. Cancer Res, 2010, 70(20): 7810-7819. |
30 | SON H, MOON A. Epithelial-mesenchymal transition and cell invasion[J]. Toxicol Res,2010,26(4): 245-252. |
31 | GHELDOF A, BERX G. Cadherins and epithelial-to-mesenchymal transition[J]. Prog Mol Biol Transl Sci, 2013, 116: 317-336. |
32 | KAHLERT U D, MACIACZYK D, DOOSTKAM S, et al. Activation of canonical WNT/β-catenin signaling enhances in vitro motility of glioblastoma cells by activation of ZEB1 and other activators of epithelial-to-mesenchymal transition[J]. Cancer Lett, 2012,325(1): 42-53. |
33 | IWADATE Y. Epithelial-mesenchymal transition in glioblastoma progression[J]. Oncol Lett, 2016, 11(3): 1615-1620. |
34 | ISER I C, PEREIRA M B, LENZ G, et al. The epithelial-to-mesenchymal transition-like process in glioblastoma: an updated systematic review and in silico investigation[J]. Med Res Rev, 2017, 37(2): 271-313. |
35 | SINGH S K, CLARKE I D, TERASAKI M, et al. Identification of a cancer stem cell in human brain tumors[J]. Cancer Res, 2003, 63(18): 5821-5828. |
36 | CARRO M S, LIM W K, ALVAREZ M J, et al. The transcriptional network for mesenchymal transformation of brain tumours[J]. Nature, 2010,463(7279):318-325. |
37 | KONG D, WANG Z, SARKAR S H, et al. Platelet-derived growth factor-D overexpression contributes to epithelial-mesenchymal transition of PC3 prostate cancer cells[J]. Stem Cells, 2008, 26(6): 1425-1435. |
38 | MIELE L, MIAO H, NICKOLOFF B J. NOTCH signaling as a novel cancer therapeutic target[J]. Curr Cancer Drug Targets, 2006, 6(4): 313-323. |
39 | RANGANATHAN P, WEAVER K L, CAPOBIANCO A J. Notch signalling in solid tumours: a little bit of everything but not all the time[J]. Nat Rev Cancer, 2011, 11(5): 338-351. |
40 | 王闻楚. E-cadherin通过Notch信号通路介导前列腺癌耐药的分子机制[D]. 南宁: 广西医科大学, 2015. |
41 | YI L, ZHOU X, LI T, et al. Notch1 signaling pathway promotes invasion, self-renewal and growth of glioma initiating cells via modulating chemokine system CXCL12/CXCR4[J]. J Exp Clin Cancer Res,2019,38(1): 339. |
42 | JIANG L G, WU J, CHEN Q H, et al. Notch1 expression is upregulated in glioma and is associated with tumor progression[J]. J Clin Neurosci, 2011, 18(3): 387-390. |
43 | LEONG K G, NIESSEN K, KULIC I, et al. Jagged1-mediated Notch activation induces epithelial-to-mesenchymal transition through Slug-induced repression of E-cadherin[J]. J Exp Med, 2007, 204(12): 2935-2948. |
44 | 游 焜,王大军,王 亮,等. 敲除NOR1基因对人肝癌裸鼠移植瘤的影响及作用机制[J]. 临床肝胆病杂志,2020,36(2): 381-386. |
45 | BILLOTTET C, TUEFFERD M, GENTIEN D, et al. Modulation of several waves of gene expression during FGF-1 induced epithelial-mesenchymal transition of carcinoma cells[J]. J Cell Biochem, 2008, 104(3): 826-839. |
46 | TIMMERMAN L A, GREGO-BESSA J, RAYA A, et al. Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation[J]. Genes Dev, 2004, 18(1): 99-115. |
47 | SAHLGREN C, GUSTAFSSON M V, JIN S, et al. Notch signaling mediates hypoxia-induced tumor cell migration and invasion[J]. PNAS, 2008, 105(17): 6392-6397. |
48 | NIESSEN K, FU Y, CHANG L, et al. Slug is a direct Notch target required for initiation of cardiac cushion cellularization[J]. J Cell Biol, 2008, 182(2): 315-325. |
49 | LI J L, LI Q B, LIN L, et al. Targeting the Notch1 oncogene by miR-139-5p inhibits glioma metastasis and epithelial-mesenchymal transition (EMT)[J]. BMC Neurol, 2018, 18(1): 133. |
50 | 赵 林, 张才全, 廖 刚, 等. PDGF-D和VEGF在胃癌中的表达及其意义[J].基础医学与临床,2009,29(12): 1305-1309. |
51 | HUANG H. Matrix metalloproteinase-9 (MMP-9) as a cancer biomarker and MMP-9 biosensors: recent advances[J]. Sensors (Basel),2018, 18(10):3249. |
[1] | 刘翠兰,胡凤爱,刘晶,王丹,邱长云,柳敦江,赵娣. 脂联素受体激动剂AdiopRon对胶质瘤细胞生物学行为的影响及其机制[J]. 吉林大学学报(医学版), 2022, 48(3): 702-710. |
[2] | 曹娟,李玮柏,郭秀,李波,董春玲. 靶向沉默热休克蛋白27对口腔鳞状细胞癌CAL27细胞侵袭和迁移的作用及其机制[J]. 吉林大学学报(医学版), 2021, 47(4): 971-977. |
[3] | 刘翠兰, 李建军, 姜贺, 刘晶, 王丹, 李晨, 赵娣. 尿石素B对人神经胶质瘤U118 MG细胞生物学行为的影响及其机制[J]. 吉林大学学报(医学版), 2021, 47(3): 566-574. |
[4] | 贾茗博,孙莹,王莹,宋燕珂,赵丽艳. 氯化两面针碱通过JAK2/STAT3信号通路对胶质瘤细胞上皮-间质转化的抑制作用[J]. 吉林大学学报(医学版), 2021, 47(1): 73-81. |
[5] | 肖华, 姚声涛. 转染TRIM29-siRNA对胶质瘤U87MG细胞周期和凋亡的影响[J]. 吉林大学学报(医学版), 2020, 46(02): 323-328. |
[6] | 董卓, 李嘉乐, 陈肖逸, 王蕊, 衣峻萱, 魏新锋, 金顺子. NRP1基因敲除对放射性肺纤维化进程的影响及其作用机制[J]. 吉林大学学报(医学版), 2020, 46(01): 26-34. |
[7] | 杨智源, 闻乃妍, 林杨, 梁航, 王乾, 胡馨丹, 张灵, 任辉, 郭宝锋. SF2523对人源脑胶质瘤干细胞TS576增殖的抑制作用及其机制[J]. 吉林大学学报(医学版), 2019, 45(06): 1281-1287. |
[8] | 赵丽艳, 宋扬, 陈勇, 贾茗博, 李蕴潜. 沉默ZEB1基因对胶质瘤U87细胞上皮-间质转化的影响[J]. 吉林大学学报(医学版), 2019, 45(05): 1036-1040. |
[9] | 周海霞, 侯力键, 王正明, 田宇, 韩亮, 李密馥. HOXA4调控Wnt/β-catenin信号通路对裸鼠移植胶质瘤的抑制作用[J]. 吉林大学学报(医学版), 2019, 45(03): 474-478. |
[10] | 刘洋, 刘志, 金嘉慧, 赵洋洋, 马历兵, 张国, 刘文革, 任俊, 李凤娥, 孔繁利. 以下丘脑症状起病的抗LGI1抗体阳性边缘叶脑炎1例报告及文献复习[J]. 吉林大学学报(医学版), 2019, 45(03): 709-713. |
[11] | 王东东, 张宇, 张伟琪, 丁振东, 于洪泉, 齐玲. SENP1、SENP2和SENP6蛋白在人恶性胶质瘤组织和细胞中的表达及其意义[J]. 吉林大学学报(医学版), 2019, 45(01): 73-76. |
[12] | 赵丽艳, 宋扬, 吕晓艳, 贾茗博, 朱洪权. 上皮-间质转化胶质瘤细胞的干细胞样特性及白藜芦醇对其干细胞样特性的抑制作用[J]. 吉林大学学报(医学版), 2018, 44(06): 1185-1189. |
[13] | 赵丽艳, 宋扬, 陈勇, 吕晓艳, 贾茗博, 李蕴潜. 白藜芦醇对胶质瘤U87细胞上皮-间质转化的抑制作用[J]. 吉林大学学报(医学版), 2018, 44(05): 943-948. |
[14] | 邢树刚, 张丽红, 金明华, 李百慧, 武则馨, 房波, 李伟. 杨梅黄酮对小鼠脑胶质瘤GL261细胞增殖和凋亡的影响[J]. 吉林大学学报(医学版), 2018, 44(05): 955-961. |
[15] | 吕鹏, 宁明杰, 邵玉, 张璐妮, 唐英, 王南博, 陈飞儿, 齐玲. 野黄芩苷对人脑胶质瘤U87细胞的增殖抑制作用及其机制[J]. 吉林大学学报(医学版), 2018, 44(03): 466-470. |
|